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Résoudre dans C l’équation z3
= −i.

On pose z = a+ ib avec a ∈ R et b ∈ R. Nous verrons à l’avenir une résolution plus rapide, mais il faudra attendre

la S7.
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On a donc z3
= a3 − 3ab2

+ i(3a2b − b3) et on sait que z3
= 0 − 1 × i.

En identifiant les parties réelles et les parties imaginaires (comme dans l’exercice du jour), on obtient :















a3 − 3ab2
= 0

3a2b − b3
= −1

Nous pouvons aussi écrire ce système sous la forme :















a(a2 − 3b2) = 0

3a2b − b3
= −1

1. Cas 1 : a = 0

Alors la première équation est vérifiée et la seconde devient :

−b
3
= −1 ⇒ b = 1

z1 = i

Vérification toujours utile : i3
= −i. Nous sommes des gros balèzes, passons donc à la suite.

2. Cas 2 : a , 0

En divisant par a la première équation (nous pouvons, car on suppose ici que a , 0), on obtient alors dans la

première équation :

a
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√
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soit a =
√

3 b ou a = −
√

3 b. En remplaçant a dans la première équation, on obtient alors dans la deuxième

équation :
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√
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(b) Si a = −
√
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√
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Conclusion : Nous trouvons ainsi trois solutions (dans l’ensemble des nombres complexes) :
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