Formulaire sur les groupes

1 Ordre d'un élément, ordre d'un groupe

Définition (ordre d'un élément) : soit G groupe¹, $x \in G$. Alors :

Si $\exists n \in \mathbb{N}$ tq. $x^n = e_G$, on dit que l'ordre de x est fini. L'ordre de x est l'entier MINIMAL strictement positif tel que $x^n = e_G$. On notera : |x| = n

Si $\nexists n \in \mathbb{N}$ tq. $x^n = e_G$, on dit que l'ordre de x est infini

Définition (sous-groupe engendré) : soit G groupe, $x \in G$. L'ensemble $\langle x \rangle := \{x^k, k \in \mathbb{Z}\}$ est appelé sous-groupe de G engendré par x.

Proposition : | < x > | = |x|

2 Générateur, groupes monogènes, groupes cycliques

Définition (ÉLEMENT GÉNÉRATEUR) : Soit $x \in G$. On dit que x est générateur de G si < x >= G

rem. : si
$$G = \langle x \rangle$$
, alors $|G| = |\langle x \rangle|$

Définition : un groupe monogène est un groupe engendré par un élément, un groupe cyclique est un groupe monogène fini (il a donc un ordre).

Soit G monogène. On a donc : $\exists x \in G, G = \langle x \rangle$ où $\langle x \rangle := \{x^k, k \in \mathbb{Z}\}$

Soit G cyclique d'ordre n. On a donc : $\exists x \in G, G = \langle x \rangle = \{x^k, 1 \leq k \leq n\}$

Exemples:

- (1) $(\mathbb{Z}, +) = <1>$ et $(n\mathbb{Z}, +) = < n>$ donc sont des groupes monogènes, de type finis (mais infinis donc non cycliques)
- (2) $(\mathbb{Z}/n\mathbb{Z}, +) = <1 > \text{cyclique}$

qui contiennent A.

(3) Tout groupe fini d'ordre premier est cyclique (4) si \mathbb{K} corps abélien, G sous-groupe fini de (\mathbb{K} , " \cdot "), alors G cyclique

Définition (système de générateur) : soit (G,*) groupe², $A \subset G$. Alors $< A >= \{x_1^{n_1}* \dots * x_k^{n_k}, k \in \mathbb{N}, n_i \in \mathbb{Z}, x_i \in A\}.$ < A > est l'intersection de tous les sous-groupes de G

On dit que A est un système de générateur si A >= G. Si G possède un ensemble de générateur fini, on dit qu'il est de type fini.

rem : G fini \Rightarrow G de type fini. La réciproque est fausse (ex : \mathbb{Z})

3 Eléments inversibles de $(\mathbb{Z}/n\mathbb{Z})$

On notera les éléments inversibles³ de ($\mathbb{Z}/n\mathbb{Z}$), "·") par : ($\mathbb{Z}/n\mathbb{Z}$)[×] ($\mathbb{Z}/2\mathbb{Z}$)[×]={1} =< 1 > cyclique

 $(\mathbb{Z}/3\mathbb{Z})^{\times}=\{1,2\}=<2>$ cyclique $(\mathbb{Z}/4\mathbb{Z})^{\times}=\{1,3\}=<3>$ cyclique $(\mathbb{Z}/5\mathbb{Z})^{\times}=\{1,2,3,4\}=<2>$ cyclique $(\mathbb{Z}/8\mathbb{Z})^{\times}=\{1,3,5,7\}$ monogène, pas cyclique, car $\nexists x\in(\mathbb{Z}/8\mathbb{Z})$ tel que $<x>=(\mathbb{Z}/8\mathbb{Z})$

Remarque: si p premier, $(\mathbb{Z}/p\mathbb{Z})^{\times} = (\mathbb{Z}/p\mathbb{Z})^{*}$

4 Sous-groupe normal-distingué

M est un sous-groupe distingué (ou normal) de G si(si):

$$\forall g \in G, gMg^{-1} = M$$

$$\iff \forall g \in G, gM = Mg$$

$$\iff \forall g \in G, gMg^{-1} = M$$

$$\iff \forall g \in G, \forall m \in M, gmg^{-1} \in M$$

 \iff G/M est un groupe pour la loi canonique, ie $\overline{g_1}.\overline{g_2} = \overline{g_1g_2}$

Exemples:

- (1) si G est abélien, tous les sous groupes de G sont normaux
- (2) $\{e_G\}$ et G sont normaux
- (3) soit $\phi: G \to H$ homomorphisme de groupes. Alors $Ker\phi$ est un sous-groupe normal de G
- (4) tout sous groupe d'ordre 2 est normal
- (5) $[G, G] := \langle g.h.g.h^{-1}, g, h \in G \rangle$ est un sous groupe normal (commutateur de G)

L'intérêt des sous-groupes distingués est donc qu'il existe une structure de groupe sur G/H telle que : π : $G \rightarrow G/H$ soit un homomorphisme de groupe $x \mapsto [x]$

(puis théorême de factorisation)

 $^{^1\}mathrm{Source}$: Dixmier, Pajitnov, Terracher. Tapée par Gwendal. Mise à jour le 16/02/2006

²si loi+, $\langle A \rangle = \{n_1 x_1 + ... + n_k x^k\}$

 $^{^3}$ On s'intéresse évidemment aux éléments inversibles pour la loi "·" (car groupe pour la loi +, donc tous les éléments sont inversibles). Elément neutre : $\overline{1}$

5 Groupes symétriques

5.1 Décomposition d'une permutation en cycles

Soit $\tau \in S_n$ une permutation. Alors il existe une décomposition de τ en cycles disjoints :

- (1) $\tau = \sigma_1 \circ ... \circ \sigma_k$
- (2) $\sigma_i \circ \sigma_j = \sigma_j \circ \sigma_i, \forall i, j = 1...k$
- (3) $|\tau| = ppcm(|\sigma_1|, ..., |\sigma_k|)$

5.2 Signature d'une permutation

Soit $\tau \in S_n$ une permutation. On définit la signature de τ par $\xi(\tau) = (-1)^{nbe\ d'inversions}$

- -Prop : τ une transposition. Alors $\xi(\tau) = -1$
- -Prop : σ un cycle de longueur k. Alors $\xi(\sigma) = (-1)^{k-1}$
- -Prop : $\xi(\sigma_1 \circ \sigma_2) = \xi(\sigma_1)\xi(\sigma_2)$
- -Prop : $\xi(\sigma) = (-1)^{n-(nombre\ d'\ orbite\ de\ \sigma)}$

5.3 Décomposition d'un cycle en transpositions

Théorême : tout cycle $\sigma \in S_n$ peut se décomposer en produit de transpositions:

$$(x_1,...,x_p) = (x_1,x_2)(x_2,x_3)...(x_{p_1},x_p)$$

rem : cycle de longueur $p \longrightarrow$ décomposition en p-1transpositions

Exemple : σ =

Décomposition en cycles disjoints $(1\ 3\ 2\ 4)(5\ 8\ 11)(6\ 7\ 9\ 12)$

transpositions : Décomposition en $(1\ 3)(3\ 2)(2\ 4)(4\ 5)(5\ 8)(8\ 11)(6\ 7)(7\ 9)(9\ 12)$

Ordre : $|\sigma| = ppcm(4, 3, 4) = 12$ $\sigma^{11} = \sigma^{-1} = (1 \ 4 \ 2 \ 3)(5 \ 11 \ 8)(6 \ 12 \ 9 \ 7)$

Actions de groupes

Action de groupe : soit (G, \circ) un groupe, E un ensemble. Une application $*: G \times E \rightarrow E$ vérifiant les conditions ci-dessous est appelé action de G sur E

- 1. $(g_1 \circ g_2) * x = g_1 * (g_2 * x), \forall x \in E, g_i \in G$
- 2. $e_G * x = x, \forall x \in E$

Exemples d'actions :

- (1) $S_3 \operatorname{sur} (\mathbb{Z}/2\mathbb{Z})^3$:
- $\sigma * (x_1, x_2, x_3) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)})$
- (2) $S_n \text{ sur } \{1, ..., n\} : \sigma * (i) = \sigma(i)$
- (3) $S_n \text{ sur } (\mathbb{R}^n : \sigma * (x_1, ..., x_n) = (x_{\sigma(1)}, ..., x_{\sigma(n)})$
- (4) *G* sur *G* par conjugaison : $g_1 * g_2 = g_1 \circ g_2 \circ g_1^{-1}$

Trois exemples d'actions de S_3 sur S_3 :

- (1) action triviale : $\sigma \circ \tau = \tau$
- (2) action par translation : $\sigma * \tau = \sigma \circ \tau$
- (3) action conjugaison (automorphisme. intérieur) : σ * $\tau = \sigma \circ \tau \circ \sigma^{-1}$

Divers

- Orbite de $x : O_x = \{g * x, g \in G\}$
- Stabilisateur de $x : St_x = \{g \in G, g * x = x\}$ (sousgroupe de G)
- Centre de $G: Z(G)=\{g\in G, \forall h\in G, hg=gh\}$ (c'est un sous-groupe distingué-normal)
- $-G = S_n$. Support de $\sigma \in S_n(E)$: $supp(\sigma) = \{x \in$ $E, \sigma(x) \neq x$

Remarque: si $y \in O_x$, alors $O_y = O_x$

Formule des classes 8

Soit $*: G \times X \longrightarrow X$

8.1 Action transitive

Si l'action est transitive : cardinal du groupe Cardinal de l'orbite= $\frac{cardinal\ du\ stabilisateur}{cardinal\ du\ stabilisateur}$

$$|X| = \frac{|G|}{|St_x|} \text{ où } x \in X$$

Action non transitive 8.2

Si l'action est non transitive :

Cardinal de X=somme des des orbites= $\sum_{x \in V} \frac{|G|}{|St_x|}$, où St_x : stabilisateur de x

8.2.1 cas particulier: Action par conjugaison

Si G fini,
$$|G| = |Z(G)| + \sum_{i=1}^{n} \frac{|G|}{|St_{x_i}|}$$

où $x_i \in O_i$ avec $O_1, ..., O_n$ les orbites tq. $card(O_i) > 1$ Z(G) est le centre de x dans G pour l'action de conjugaison : $Z(G) = \{g \in G, gx = xg\} = \{g \in G, gxg^{-1} = x\}$

 $\sum_{x \in systeme \ de \ representant(1)} |O_x|$ $|O_x|$ Plus simplement : |G| =

où $x \in systeme de representant$ sous entend qu'il ne faut pas compter deux fois les mêmes orbites

Exemple:
$$S_3 = \{Id, \tau_1, \tau_2, \tau_3, \sigma, \sigma^2\}$$

 $Z(G) = O_{Id} = \{Id\}$
 $O_{\tau_1} = \{\tau_1, \tau_2, \tau_3\} = O_{\tau_2} = O_{\tau_3}$
 $O_{\sigma} = \{\sigma, \sigma^2\} = O_{\sigma^2}$
Donc $S_3 = \sum_{x \in \{Id, \tau, sigma\}} = |Z(G)| + \sum_{x \in \{\tau, sigma\}} = |O_{Id}| + |O_{\tau_1}| + |O_{\sigma}| = 1 + 3 + 2 = 6$

Si de plus, f est surjective, on a :

9 Théorême de factorisation

9.1 Décomposition canonique d'une application

Soit $f: E \longrightarrow F$ une application, \mathcal{R} la relation d'équivalence f(x) = f(y), s l'application canonique $s: E \longrightarrow E/\mathcal{R}$. L'application s est surjective, l'application i est injective, et on a :

Rappel: f surjective ie $Im(f) = f(G_1)$

9.3 Décomposition canonique d'un homomorphisme d'anneaux

Soit A_1 , A_2 deux anneaux, f un homomorphisme de A_1 dans A_2 . Nous supposerons A_1 abélien (commutatif). Alors Ker(f) est distingué-normal, et Ker(f) est un idéal de A_1 , et on a :

On écrit souvent cela sous forme de théorême :

Théorême: Il existe une unique application h de EE/\mathcal{R} dans f(E) telle que $f = i \circ h \circ s$. Cette application est bijective.

Si u est un élément de E/\mathcal{R} , son image par h s'obtient en choisissant un représentant quelconque de u et en prenant son image par f.

Si de plus, f est surjective, on a :

9.2 Décomposition canonique d'un homomorphisme de groupes

Soit G_1 , G_2 deux groupes, f un homomorphisme de G_1 dans G_2 . Nous supposerons G_1 abélien (commutatif). Alors Ker(f) est distingué-normal, et on a :