Inégalités des accroissements finis - Exemples d'applications à l'étude de suites et de fonctions

Prérequis¹ : -Théorème des valeurs intermédiaires

-Théorème de Rolle

1 Inégalité des accroissements finis

Théorème (): Soient $(a,b) \in \mathbb{R}^2$, et $f : [a,b] \to \mathbb{R}$ une application continue sur [a,b], et dérivable sur [a,b], et dérivable sur [a,b] (alors il existe au moins un point $c \in [a,b]$ (blue [a,b]) tel que [a,b] (c).

preuve: Soit
$$\varphi$$
 tel que $[a,b] \to \mathbb{R}$

$$x \mapsto f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$
On a $\varphi(b) = \varphi(a) = 0$, donc par Rolle, $\exists c \in]a, b[$ tel que $\varphi'(c) = 0$

Corollaire: (I ´ ´)

Soient $(a, b) \in \mathbb{R}^2$, et $f : [a, b] \to \mathbb{R}$ une application continue sur [a, b], et dérivable sur [a, b]. Si de plus, $\exists (m, M) \in \mathbb{R}^2$, tel que $m \le f'(x) \le M \ \forall x \in]a, b[$, on a alors : $m(b-a) \le f(b) - f(a) \le M(b-a), \ \forall x \in]a, b[$.

remarques:

-Si f est bornée, le taux d'accroissement aussi.

-Pour m et M petit, si on connait f(a), on peut donc approcher f(b). Ex : calcul de $\sqrt{105}$

Soit
$$f: [100, 121] \rightarrow \mathbb{R}$$

 $x \mapsto \sqrt{x}$

On a: $\frac{1}{22} \le f'(x) \le \frac{1}{20}$, donc $\frac{5}{22} \le \sqrt{105} - \sqrt{100} \le \frac{5}{20}$, donc $10, 22 \le \sqrt{105} \le 11, 25$

Corollaire: soit $f: I \mapsto \mathbb{R}$, continue sur I, dérivable sur I (où I intervalle de bornes a et b). S'il existe $M \in \mathbb{R}_+$ tel que $\forall x \in I$, $|f'(x)| \leq M$, on a alors :

$$|f(b) - f(a)| \le M|b - a|$$

Exemple: soit $|\cos a - \cos b| \le |b - a|, \forall (a, b) \in \mathbb{R}^2$.

2 Application à l'étude de fonctions

2.1 Interprétation graphique

Soit f vérifiant les hypothèses du IAF. Alors $\forall x \in]a, b[, m(x-a) + f(a) \le f(x) \le M(x-a) + f(a)$, et $M(x-b) + f(b) \le f(x) \le m(x-b) + f(b)$.

$$ex: f: [1,2] \rightarrow \mathbb{R}$$

$$x \mapsto \frac{1}{x}$$

¹L'exposé a été présenté à Bordeaux(1) en 2005, tapé par Gwendal Haudebourg. Réalisé avec L⁴TEX. Mis à jour le 10/06/2007.

Théorème de Lagrange

Soit I un intervalle réel infini (ou non), et $f: I \to \mathbb{R}$ une application continue sur I, et dérivable sur I.

(i) $\forall x \in I, f'(x) \ge 0 \iff f \text{ croissante sur } I$

(ii)
$$\forall x \in I$$
, $f'(x) = 0 \iff f$ constante sur I

preuve : (i) (\Rightarrow) Si $\forall x \in I$, $f'(x) \ge 0$, on prend $(a,b) \in I^2$ avec a < b. Alors le théorème des accroissements finis appliqué à $f \Rightarrow \exists c \in]a, b[$ tel que f(b) - f(a) = (b - a)f'(c). Comme $f'(c) \ge 0$, on obtient $f(b) \ge f(a)$, donc f croissante sur [a, b], donc f est croissante sur I.

(i) (⇐) ne relève pas du TAF

Application à l'étude de suite

3.1 Etude de suites par comparaison

Etude de
$$(u_n)_n$$
, $u_n = \sum_{p=n+1}^{2n} \frac{1}{p}$.

L'IAF appliqué à $f: [x, x+1] \rightarrow \mathbb{R}$, pour $x \in \mathbb{R}_+^*$

On a:

$$\frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x}$$

$$u_n \le \ln 2n - \ln n \le u_n + \frac{1}{n} - \frac{1}{2n}$$

$$u_n \le \ln 2 \le u_n + \frac{1}{2n}$$

$$\ln 2 - \frac{1}{2n} \le u_n \le \ln 2$$

D'où:

$$\lim_{n\to\infty}u_n=\ln 2$$

remarque : si on nous demande une autre preuve de la convergence de u_n :

$$0 \le u_n \le \frac{n}{n+1} \le 1$$

$$u_{n+1} - u_n = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{1}{2n+1} - \frac{1}{2n+2} \ge 0$$
Donc u_n est majorée, croissante, donc converge.

3.2 Etudes de suites $u_{n+1} = f(u_n)$

Théorème du point fixe :

Soit $f:[a,b] \mapsto [a,b]$, continue sur [a,b], dérivable sur [a,b]. Si $\forall x \in]a,b[$, $|f'(x)| \le k,k \in [0,1[$, alors f(x) = x admet une unique solution dans [a, b].

preuve : Existence :

$$f(a) \le a, f(b) \ge b, \text{ car } f : [a, b] \longmapsto [a, b]. \text{ Soit } g : [a, b] \rightarrow \mathbb{R}$$

 $x \mapsto f(x) - x$

On a : $g(a) \ge 0$, $g(b) \le 0$, et g continue sur [a,b], donc d'après le TVI, $\exists x \in [a,b]$ tel que g(x) = 0 (ie f(x) = x).

Unicité:

Soient
$$x$$
 et y deux points fixes (ie $f(x) = x$, $f(y) = y$). D'après IAF, $|f(x) - f(y)| \le |x - y|$, $\Rightarrow |x - y| \le |x - y|$, donc $x = y$.

Corollaire: A

Sous les hypothèses du théorème précédent, soit $(u_n)_n$ définie par : $u_0 \in [a,b]$, $u_{n+1} = f(u_n)$. Alors $(u_n)_n$ converge, et sa limite l, point fixe de f, est telle que $\forall n \in \mathbb{N}, |u_n - l| \le k^n(b - a)$.

exemple: Etude de $u_0 = 0$, $u_{n+1} = \sqrt{\frac{3}{2} + u_n}$ Si l existe, alors $l = \sqrt{\frac{3}{2} + l}$, d'où $l = \frac{1 + \sqrt{7}}{2}$ ($l \ge 0$). $k = \frac{1}{\sqrt{14}} \le \frac{1}{3}$, donc $|u_n - l| \le \frac{1}{3^n}.2$