Exposé 72 : Fonctions dérivées. Opérations algébriques. Dérivées d'une fonction composée. Exemples.

Prérequis¹:

- -Dérivabilité en un point : 3 définitions équivalentes.
- -fonctions usuelles. -Notions de limite et continuité -Si f dérivable en a, alors f continue en a.

<u>Cadre</u>: f est une fonction définie sur D_f à valeurs dans \mathbb{R} , où D_f est un ensemble quelconque de \mathbb{R} . I un intervalle de \mathbb{R} .

Le but de cet exposé est de passer d'une étude locale (dérivabilité en un point) à une étude globale : dérivée sur un ensemble.

1 Fonction dérivée

1.1 Définitions

Définition: (i) On dit que f est dérivable sur $I \subset D_f$ si(si) f est dérivable en tout point de I. (ii) Soit f dérivable sur $I \subset D_f$, on appelle fonction dérivée l'application f': $I \to \mathbb{R}$ $x \mapsto f'(x)$

1.2 Fonctions usuelles

D_f	f(x)	f'(x)	$D_{f'}$
\mathbb{R}	$k \in \mathbb{R}$	0	\mathbb{R}
\mathbb{R}	X	1	\mathbb{R}
\mathbb{R}	$x^n, n \in \mathbb{N}^*$	nx^{n-1}	\mathbb{R}
\mathbb{R}	x	1 si $x > 0$, -1 si $x < 0$	\mathbb{R}^*
[0, +∞[\sqrt{x}	$\frac{1}{2\sqrt{x}}$	\mathbb{R}_+^*
\mathbb{R}^*	$\frac{1}{x}$	$\frac{-1}{x^2}$	\mathbb{R}^*
\mathbb{R}	$\sin x$	cos x	\mathbb{R}
\mathbb{R}	cos x	$-\sin x$	\mathbb{R}

preuve : on passe à la définition de la dérivabilité en un point.

2 Opérations algébriques

Soient f, g dérivables sur $I \subset (D_f \cap D_g)$

Théorème : (i) (f + g) dérivable sur I et (f + g)' = f' + g'

(ii) (fg)' est dérivable sur I, et (fg)' = f'g + fg'

(iii) Si on suppose de plus que g ne s'annule pas sur I, alors $(\frac{1}{g})$ est dérivable sur I, et $(\frac{1}{g})' = \frac{-g'}{g^2}$

¹Leçon fortement inspirée de celle de Johann. Tapée par Gwendal, réalisé avec LAT_EX. Mise à jour le 18/04/2006.

Remarque : -on peut généraliser la propriété (i) : une somme finie de fonctions dérivables sur un même ensemble est dérivable sur cet ensemble.

-on peut étendre la propriété (iii) : avec les mêmes hypothèses :
$$(\frac{f}{g})$$
 est dérivable sur I et

$$(\frac{f}{g})' = (f.\frac{1}{g})' = f'.\frac{1}{g} + f.\frac{-g'}{g^2} = \frac{f'g - fg'}{g^2}$$

(ii) soit
$$x_0 \in I$$
. $\forall x \in I - \{x_0\}$, $\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0}g(x) + \frac{g(x) - g(x_0)}{x - x_0}f(x_0)$

$$\lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = f'(x_0)g(x_0) + g'(x_0)f(x_0)$$

(ii) soit
$$x_0 \in I$$
. $\forall x \in I - \{x_0\}$, $\frac{(fg)(x) - (fg)(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0}g(x) + \frac{g(x) - g(x_0)}{x - x_0}f(x_0)$

On conclut comme g continue en x_0 , et f , g dérivable sur x_0 :

$$\lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0} = f'(x_0)g(x_0) + g'(x_0)f(x_0)$$

(iii) soit $x_0 \in I$ où g ne s'annule pas sur I . $\forall x \in I - \{x_0\}$,

$$(\frac{1}{g(x)} - \frac{1}{g(x_0)}) \cdot \frac{1}{x - x_0} = (-\frac{1}{g(x)g(x_0)} \cdot \frac{g(x) - g(x_0)}{x - x_0}, \text{ or } g \text{ continue sur } I \text{ et } g \text{ dérivable sur } I, \text{ donc}$$

$$\lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = -\frac{1}{g(x_0)^2} \cdot g'(x_0)$$

Applications : calcul de dérivées des fonctions suivantes :

-fonctions polynômes

$$-x \mapsto \frac{1}{x^{\alpha}}, \alpha \in \mathbb{N} \text{ sur } \mathbb{R}^*$$
$$-\tan x \text{ sur }] - \frac{\pi}{2}, \frac{\pi}{2}[$$

Exercice : f fonction dérivable sur I, $n \in \mathbb{N}^*$

(i) montrons que $(f^n)' = n \cdot f' \cdot f^{n-1}$

(ii) montrons que
$$(\frac{1}{f^n})' = \frac{-nf'}{f^{n-1}}$$

preuve : récurrence

Dérivée d'une fonction composée

Théorème : $f: I \longrightarrow \mathbb{R}$ dérivable sur $I, g: J \longrightarrow \mathbb{R}$ dérivable sur $J, f(I) \subset J$. Alors $(g \circ f)$ est dérivable sur *I*, et $(g \circ f)' = f' \cdot (g' \circ f)$

Applications : (i) $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} $x \mapsto ax + b$

 $(g \circ f)(x) = g(ax + b), (g \circ f)'(x) = ag'(ax + b)$

(ii)
$$f: I \longrightarrow \mathbb{R}_+^*$$
 dérivable, $g: \mathbb{R}_+^* \longrightarrow \mathbb{R}$, $(\sqrt{f})'(x) = \frac{f'(x)}{2 \cdot \sqrt{f(x)}}$, ou encore : l'application dérivée

de la fonction $x \mapsto \sqrt{f(x)}$ est l'application $x \mapsto \frac{f'(x)}{2\sqrt{f(x)}}$

(iii) $(\cos u)'(x) = -u'(x) \cdot \sin x$, $(\sin u)'(x) = u'(x) \cdot \cos x$

Exercice: (i) si f dérivable, alors : f paire $\Leftrightarrow f'$ impaire

(ii) si f est définie sur \mathbb{R} de période T et dérivable sur \mathbb{R} , alors f' est de période T

Dérivées successives

Définition: soit f dérivable sur $I \subset D_f$ et $n \in \mathbb{N}^*$. On dit que f est dérivable à l'ordre n sur I s'il existe des applications $f_0, ..., f_{n-1}$ dérivables sur I telles que $\begin{cases} f_0 = f \\ f_{k+1} = f_k', \forall k = 0...n-1 \end{cases}$ La dérivée d'ordre n de f sur I est alots $(f_{n-1})'$ notée $f^{(n)}$

Remarque: on pose parfois $f^{(0)} = f$, et on écrit indifférement f' où $f^{(1)}$, et f'' ou $f^{(2)}$

Définition: on dit que f est C^k , $k \in \mathbb{N}$, sisi $f^{(k)}$ est définie et continue sur I. On dit que f est de classe $C^{+\infty}$ si(si) f est de classe C^k pour tout $k \in \mathbb{N}$.

Exercice: les fonctions polynômes, sinus, cosinus...

Théorème : formule de Leibniz : $n \in \mathbb{N}^*$, f dérivable à l'ordre n sur I, g dérivable à l'ordre n sur I.

Alors (fg) est dérivable à l'ordre n sur I, et $(fg)^n = \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k)}$

Compléments 5

5.1 Preuves

preuve (formule de Leibniz) : par récurrence. n = 0 et n = 1 sont évidents : n = 1 (fg)' = f'g + gf' soit $\overline{n \in \mathbb{N}}$, supposons que la formule est vérifiée au rang (n-1).

$$(fg)^{(n)} = ((fg)')^{(n-1)} = (f'g)^{(n-1)} +$$

$$(fg')^{(n-1)} = \sum_{k=0}^{n-1} C_{n-1}^{k} \cdot f^{(k+1)} \cdot g^{(n-1-k)} + \sum_{k=0}^{n-1} C_{n-1}^{k} \cdot f^{(k)} \cdot g^{(n-k)} = \sum_{k=0}^{n} C_{n-1}^{k-1} \cdot f^{(k)} \cdot g^{(n-k)} + \sum_{k=0}^{n-1} C_{n-1}^{k} \cdot f^{(k)} \cdot g^{(n-k)}$$

$$= \sum_{k=1}^{n-1} (C_{n-1}^{k-1} + C_{n-1}^k) \cdot f^{(k)} \cdot g^{(n-k)} + C_{n-1}^0 \cdot f \cdot g^{(n)} + C_{n-1}^{n-1} \cdot f^{(n)} \cdot g. \text{ Or } C_{n-1}^{n-1} = C_n^n, C_{n-1}^0 = C_n^0 \text{ et } C_{n-1}^{k-1} + C_{n-1}^k = C_n^k,$$
d'où le résultat

П

preuve (fonction composée) : soit $x_0 \in \mathbb{R}$. $\forall x \in I - \{x_0\}$,

$$\frac{\overline{g(f(x))} - g(f(x_0))}{x - x_0} = \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \frac{f(x) - f(x_0)}{x - x_0} \longrightarrow g'(f(x_0)) \cdot f'(x_0)$$

Exercice: (i) si f dérivable, alors : f paire $\Leftrightarrow f'$ impaire

(ii) si f est définie sur \mathbb{R} de période T et dérivable sur \mathbb{R} , alors f' est de période T

preuve : (i) montrons que f paire et dérivable \Rightarrow f' impaire.

Soit
$$g: x \mapsto -x$$
. $(f \circ g)(x) = f(-x)$ et $(f \circ g)'(x) = f'(g(x)).g'(x) = -1.f'(-x) = -f'(-x)$. Or $f(x) = f(-x)$, donc $f'(-x) = -f'(x)$ ie f' impaire.

(ii)
$$f(x+nT) = f(x) \ \forall n \in \mathbb{Z}$$
. On considère $g: x \mapsto x + nT$; $f \circ g(x) = f(x+nT)$. Or $f(x+nT) = f(x)$ et $(f \circ g)'(x) = f'(g(x)).g'(x) = f'(x+nT)$, d'où $f'(x) = f'(x+nT)$ ie f' T -périodique.

Exercice: soit f fonction dérivable sur I, $n \in \mathbb{N}^*$. Alors $(f^n)' = n \cdot f' \cdot f^{n-1}$

preuve : par récurrence. n = 1 est trivialement vrai ; on suppose que la formule est vraie pour n - 1,

$$n \in \mathbb{N}$$
, ie $(f^{(n-1)})' = (n-1)f' \cdot f^{(n-2)}$.

$$\frac{1}{n \in \mathbb{N}, \text{ ie } (f^{(n-1)})' = (n-1)f'.f^{(n-2)}.} \\
(f^{(n)})' = (f.f^{(n-1)})' = f'.f^{(n-1)} + f(f^{(n-1)})' = f'.f^{(n-1)} + f(n-1)f'.f^{(n-2)} = f'.f^{(n-1)}.(n-1+1) = n.f'.f^{(n-1)} \quad \Box$$

5.2 Dérivées des fonctions usuelles

(i) soit
$$f: \mathbb{R} \to \mathbb{R}$$
 soit $x_0 \in \mathbb{R}$. $\forall x \in \mathbb{R} - \{x_0\}$. $\frac{f(x) - f(x_0)}{x - x_0} = 0$ d'où le résulat.

(ii) soit
$$f: \mathbb{R} \to \mathbb{R}$$
. Soit $x_0 \in \mathbb{R}$. $\forall x \in \mathbb{R} - \{x_0\}$. $\frac{f(x) - f(x_0)}{x - x_0} = \frac{x - x_0}{x - x_0} = 1$

(iii) soit
$$f: \mathbb{R} \to \mathbb{R}$$
. Si $x > 0$, $f(x) = x$ et $f'(x) = 1$, sinon $f(x) = -x$ et $f'(x) = -1$, donc f pas $x \mapsto |x|$

dérivable en 1.

(iv) soit
$$f: \mathbb{R} \to \mathbb{R}$$
, $n \in \mathbb{N}^*$. Soit $x_0 \in \mathbb{R}$. $f(x_0 + h) = (x_0 + h)^n = \sum_{k=0}^n C_n^k x_0^k k^{n-k}$
 $= x_0^n + n x_0^{n-1} h + \sum_{k=0}^{n-2} h^{n-k} = f(x_0) + h(n x_0^{n-1}) + h. (h \sum_{k=0}^{n-2} x_0^k h^{n-2})$. Or $\lim_{h \to 0} h \sum_{k=0}^{n-2} x_0^k h^{n-2} = 0$, donc $f'(x_0) = n x_0^{n-1}$
(v) soit $f: \mathbb{R}_+ \to \mathbb{R}_+$. Soit $x_0 \in \mathbb{R}_+^*$. $\forall x \in \mathbb{R}_+^* - \{x_0\}$, $\frac{f(x) - f(x_0)}{x - x_0} = \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} = \frac{(\sqrt{x} - \sqrt{x_0})(\sqrt{x} + \sqrt{x_0})}{(x - x_0).(x + x_0)}$
 $= \frac{1}{\sqrt{x} + \sqrt{x_0}}$, donc $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \frac{1}{2\sqrt{x_0}}$ ie $f'(x_0) = \frac{1}{2\sqrt{x_0}}$

(vi) soit
$$f: \mathbb{R}_{+} \to \mathbb{R}^{*}$$
. Soit $x_{0} \in \mathbb{R}^{*}$. $\forall x \in \mathbb{R}^{*} - \{x_{0}\}, \frac{f(x) - f(x_{0})}{x - x_{0}} = \frac{\frac{1}{x} - \frac{1}{x_{0}}}{x - x_{0}} = \frac{\frac{x_{0} - x}{x \cdot x_{0}}}{x - x_{0}} = \frac{-1}{x \cdot x_{0}}, \text{ donc}$

$$\lim_{x \to x_{0}} \frac{f(x) - f(x_{0})}{x - x_{0}} = \frac{-1}{x_{0}^{2}}$$

(vii) supposons que l'on sache que
$$\sin'(0) = 1$$
 (ie que $\lim_{x \to 0} \frac{\sin x}{x} = 1$.
Soit $x_0 \in \mathbb{R}$. $\forall h \neq 0$, $\frac{\sin(x_0 + h) - \sin x_0}{h} = \frac{\sin x_0 \cos h + \cos x_0 \sin h - \sin x_0}{h}$
 $= \sin x_0 \cdot \frac{2(\sin \frac{h}{2})^2}{\frac{h}{2}} + \cos x_0 \cdot \frac{\sin h}{h} = \sin x_0 \cdot \frac{(\sin \frac{h}{2})^2}{\frac{h}{2}} + \cos x_0 \cdot \frac{\sin h}{h}$, d'où $\lim_{h \to 0} \frac{\sin(x_0 + h) - \sin x_0}{h} = \cos x_0$

Dérivabilitées : trois définitions équivalentes

1.
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = A$$

2.
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A$$

3.
$$f(x_0 + h) = f(x_0) + hA + h\varepsilon(h)$$
, avec $\lim_{h\to 0} \varepsilon(h) = 0$