Exposé 67: Fonctions polynômes

Prérequis¹: -fonctions puissances $x \mapsto x^n$, $n \in \mathbb{N}$

-"principe" de récurrence

Cadre : on considère le corps $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

1 Généralitées sur les fonctions polynômes

1.1 Définition

Soit $f: \mathbb{K} \to \mathbb{K}$. On dit que f est une fonction polynôme sur \mathbb{K} s'il existe $n \in \mathbb{N}$ et un (n+1) uplets $(a_0, ..., a_n) \in \mathbb{K}^{n+1}$

$$tq. f(x) = \sum_{k=0}^{n} a_k x^k, \forall x \in \mathbb{K}$$

 $\sum_{k=0}^{n} a_k x^k \text{ est appelé écriture polynômiale de } f \text{ (unicité montré plus loin, dans le cas } f \neq 0).$

exemples : les fonctions constantes, affines et puissances sont des fonctions polynômes.

1.2 Propriété fondamentale

Théorème: soient
$$(a_0, ..., a_n) \in \mathbb{K}^{n+1}$$
. Alors: $(\forall x \in \mathbb{K}, \sum_{k=0}^n a_k x^k = 0) \Leftrightarrow (a_0 = ... = a_n = 0)$

preuve:

(⇐) évident

$$(\Rightarrow)$$
 par récurrence : \mathcal{P}_n : $(\forall x \in \mathbb{K}, \sum_{k=0}^n a_k x^k = 0) \Rightarrow (a_0 = \dots = a_n = 0)$

 \mathcal{P}_0 est trivialement vraie

Montrons que $\forall n \in \mathbb{N}^*$, $[\mathcal{P}_{n-1} \Rightarrow \mathcal{P}_n]$. Soit $n \in \mathbb{N}$; supposons \mathcal{P}_{n-1} .

Soit
$$(a_0, ..., a_n) \in \mathbb{K}^{n+1}$$
 tq. $f(x) = \sum_{k=0}^n a_k x^k = 0 \ \forall x \in \mathbb{K}$.

En particulier
$$f(2x) = \sum_{k=0}^{n} a_k (2x)^k = 0$$
 et $2^n f(x) = 0$ d'où $2^n f(x) - f(2x) = 0 = \sum_{k=0}^{n} (2^n - 2^k) a_k x^k$

$$= \sum_{k=0}^{n-1} (2^n - 2^k) a_k x^k = 0. \text{ Donc par l'hypothèse de récurrence} : (2^n - 2^k) a_k = 0, \forall k \in [0, n-1] \text{ or } 2^n \neq 2^k,$$

 $\forall k \in [0, n-1]$ donc $a_k = 0, \forall k \in [0, n-1]$, donc $\forall x \in \mathbb{K}, f(x) = a_n x^n$; or $f(x) = 0 \Rightarrow a_n x^n = 0, \forall x \in \mathbb{K}$; par ailleurs $f(1) = a_n$, d'où $a_n = 0$, et par suite $\forall k \in \mathbb{K}, a_k = 0$ d'où \mathcal{P}_n est vérifiée.

1.3 Unicité de l'écriture polynomiale

Théorème: soit f une fonction polynôme non nulle. Alors il existe un unique $n \in \mathbb{N}$ et un unique (n+1) uplets $(a_0, ..., a_n) \in \mathbb{K}^{n+1}$ avec $a_n \neq 0$ tq. $\forall x \in \mathbb{K}$, $f(x) = a_0 + a_1x + ... + a_nx^n$

preuve : l'existence est claire, car f est supposée être une fonction polynôme non nulle.

unicité : soit f non nulle. On suppose $\exists n \in \mathbb{N}, (a_0, ..., a_n) \in \mathbb{K}^{n+1}, a_n \neq 0, \exists p \in \mathbb{N}, (b_0, ..., b_p) \in \mathbb{K}^{p+1}, b_p \neq 0$ tq. : $\forall x \in \mathbb{K}, f(x) = a_0 + a_1 x + ... + a_n x^n, \forall x \in \mathbb{K}, f(x) = b_0 + b_1 x + ... + b_p x^p$

¹L'exposé s'inspire de celui de Johann et de celui de Sandra, plus des nombreux compléments de M.T. Tapé par Gwendal. Mis à jour le 17/06/2007.

On suppose par exemple $n \ge p$; donc $\forall x \in \mathbb{K}$, $(a_0 - b_0) + (a_1 - b_1)x + ... + (a_p - b_p)x^p + a_{p+1}x^{p+1} + ... + a_nx^n = 0$ D'après le théorème précédent, on a : $\forall 0 \le k \le p$, $a_k - b_k = 0 \Leftrightarrow a_k = b_k$ et $\forall k > p$, $a_k = 0$ On a donc unicité de l'écriture polynomiale dans le cas $f \ne 0$.

Proposition: deux fonctions polynômes sont égales ssi leurs coefficients de mêmes indices sont égalex.

Définition: dans le théorème précédent, n est appelé degré de la fonction polynôme f, on note deg(f) = n, ie $deg(f) := max\{k \in \mathbb{N}, a_k \neq 0\}$

Par convention, si $f \equiv 0$ alors $deg(f) = -\infty$ (on utiliste cette convention pour la formule du degré d'un produit).

2 Opérations sur les fonctions polynômes

Soient
$$f$$
 et g deux fonctions polynômes. On pose $f(x) = \sum_{k=0}^{n} a_k x^k$, $a_n \neq 0$ et $g(x) = \sum_{k=0}^{p} b_k x^k$, $b_p \neq 0$

2.1 Somme

Proposition: (f + g) est une fonction polynôme et $deg(f + g) \le max(deg(f), deg(g))$. De plus, si $deg(f) \ne deg(g)$, alors deg(f + g) = max(deg(f), deg(g))

preuve: on suppose
$$p \le n$$
. $\forall x \in \mathbb{K}$, $(f+g)(x) = \sum_{k=0}^{p} (a_k + b_k) x^k + \sum_{k=n+1}^{n} (a_k x^k)$ d'où le résultat.

2.2 Produit

Proposition: (f.g) est une fonction polynôme et deg(f.g) = deg(f) + deg(g).

$$\underline{\text{preuve}} : \forall x \in \mathbb{K}, (f.g)(x) = (\sum_{k=0}^{n} a_k x^k). (\sum_{k=0}^{n} b_k x^k) = \sum_{k=0}^{n} \sum_{l=0}^{p} (a_k b_l x^{k+l}) \text{ donc } (f.g)(x) = \sum_{k=0}^{n+p} c_k x^k$$
où $c_k = \sum_{i=0}^{k} a_i b_{k-i}$. De plus, $a_n \neq 0$ et $b_p \neq 0$ donc $c_{n+p} = a_n b_p \neq 0$ donc $deg(f.g) = p + n = deg(f) + deg(g)$

remarque: $\forall \lambda \in \mathbb{K}^*, (\lambda f)$ est une fonction polynôme et $deg(\lambda f) = deg(f)$. En effet: $(\lambda f)(x) = \sum_{k=0}^{n} \lambda_k x^k$

2.3 Composée

Proposition : $(f \circ g)$ est une fonction polynôme et $deg(f \circ g) = deg(f).deg(g)$.

preuve:
$$\forall x \in \mathbb{K}$$
, $(f \circ g)(x) = \sum_{k=0}^{n} (a_k(g(x))^k = \sum_{k=0}^{n} a_k (\sum_{l=0}^{p} (b_l x^l)^k)$
donc $f \circ g$ est une fonction polynôme, dont le terme de plus haut degré a pour coefficient $a_n(b_p)^n$ □

2.4 Polynômes à degrés echelonnés

Proposition: soit n un entier, soit f une fonction polynôme de degré n, $\forall k \in [0, n]$, f_k est une fonction polynôme de degré k. Alors il existe un unique $(n + 1) - \mathbb{K}$ uplets $(a_0, ..., a_n)$ tq. $f = a_0 f_0 + ... + a_n f_n$ avec $a_n \neq 0$

3 Etude de la fonction polynôme

3.1 Limites

Proposition: soit f une fonction polynôme de degré n. Alors: $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} a_n x^n$ et $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} a_n x^n$

2

3.2 Propriétés différentielles

Proposition: $f(x) = \sum_{k=0}^{n} a_k x^k$. Alors $f \in C^{\infty}(\mathbb{K})$, et on a :

(i)
$$f'(x) = \sum_{k=1}^{n} k a_k x^{k-1}$$

(ii)
$$f^{[r]}(x) = \sum_{k=r}^{n} \frac{k!}{(k-r)!} a_k x^{k-r}$$

preuve : (i) $\forall k \in \mathbb{N}, g_k : x \mapsto x^k$ est une fonction $C^{\infty}(\mathbb{K})$ donc f est $C^{\infty}(\mathbb{K})$ comme somme de fonctions $C^{\infty}(\mathbb{K})$, et

$$\forall k \in \mathbb{N}^*, (a_k g_k)'(x) = k a_k x^{k-1} \text{ et } g_0'(x) = 0, \text{ donc } f'(x) = \sum_{k=1}^n k a_k x^{k-1}$$

(ii) par récurrence.

remarque: -si k > n, $f^{[k]} = 0$ -si $a_n \neq 0$, $f^n \not\equiv$

3.3 Formule de Taylor

Proposition: soit $x_0 \in \mathbb{K}$, f une fonction polynôme de degré n. Alors on a : $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$

<u>preuve</u>: d'après le théorème des polynômes à degré échelonnés, $(x-x_0)^k$ étant un polynôme de degré k $(0 \le k \le n)$, on a: $\exists (\alpha_0,...,\alpha_n) \in \mathbb{K}^{n+1}$ tq. $f(x) = \alpha_n(x-x_0)^n + \alpha_{n-1}(x-x_0)^{n-1} + ... + \alpha_0$. On dérive à l'ordre k et on obtient $f^{(k)}(x) = k!\alpha_k + (x-x_0)g(x)$ avec g fonction polynôme.

$$f^{(k)}(x_0) = k! \alpha_k \text{ ie } \forall k \in [0, n], \alpha_k = \frac{f^{(k)}(x_0)}{k!}, \text{ donc } f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

4 Divisibilité et racines

Soit f une fonction polynôme de degré n

4.1 Définition

Définition : soit *g* une fonction polynôme. On dit que :

- -f est divisible par g s'il existe h fonction polynôme tq. f = gh
- $-a \in \mathbb{K}$ est racine de f si f(a) = 0

Théorème: soit $\alpha \in \mathbb{K}$. Alors $[\alpha \text{ est racine de } f] \Leftrightarrow [\text{il existe une fonction polynôme } h \text{ tq. } f(x) = (x - \alpha)h(x)]$ (ie tq. f divisible par $(x - \alpha)$)

preuve:

 (\Leftarrow) trivial.

 (\Rightarrow) soit $\alpha \in \mathbb{K}$ racine de $f \Leftrightarrow$ ie $f(\alpha) = 0$. On applique la formule de Taylor à f: au point α

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k!} (x - \alpha)^{k} = f(\alpha) + (x - \alpha) \cdot \left[\sum_{k=1}^{n} \frac{f^{(k)}(\alpha)}{k!} (x - \alpha)^{k-1} \right] \text{ donc } (x - \alpha) \text{ divise } f$$

Théorème: soit k fixé, $\alpha \in \mathbb{K}$, $k \ge 1$, f une fonction polynôme. Les propriétés suivantes sont équivalentes:

(i) il existe *g* fonction polynôme tq. $f(x) = (x - a)^k g(x) \ \forall x \in \mathbb{K}$ et $g(a) \neq 0$

(ii)
$$f(a) = f'(a) = \dots = f^{(k-1)}(a) = 0$$
 et $f^{(k)}(a) \neq 0$

Définition : on dit alors que a est racine de f d'ordre k

preuve: d'après Taylor, (ii)
$$\Rightarrow f(x) = \frac{f^{(k)}(a)}{k!}(x-a)^k + ... + \frac{f^{(n)}(a)}{n!}(x-a)^n \operatorname{car} f(a) = ... = f^{(k-1)}(a) = 0$$

Donc $f(x) = (x-a)^k g(x)$ où $g(x) = \sum_{j=k}^n \frac{f^{(j)}(a)}{j!}(x-a)^{j-k}$ donc g est une fonction polynôme

 $g(a) = \frac{f^{(k)}(a)}{k!} + \frac{f^{(k+1)}(a)}{k+1!}(a-a) + ... + \frac{f^{(n)}(a)}{n!}(a-a)^{n-k} = \frac{f^{(k)}(a)}{k!}$ donc $g(a) \neq 0$

(i) \Rightarrow (ii) calcul (cf. polycopié)

Théorème: soit f une fonction polynôme de degré n, $f \not\equiv 0$. Alors f admet au plus n racines dans \mathbb{K} De plus, si f admet n racines distinctes $\alpha_1, ..., \alpha_n$, alors $\forall x \in \mathbb{K}$, $f(x) = \lambda(x - \alpha_1)...(x - \alpha_n)$ où $\lambda \in \mathbb{K}$

preuve : si admet k racines avec k > n, alors il existe g fonction polynôme tq. $f(x) = (x - \alpha_1)...(x - \alpha_k)g(x)$. $\forall i \in [0, k], (x - \alpha_i)$ est de degré 1, donc f(x) est de degré $k \ge n$ d'où la contradiction. Si f admet n racines distinctes $\alpha_1, ..., \alpha_n$ alors il existe g fonction polynôme tel que $\forall x \in \mathbb{R}, f(x) = (x - \alpha)...(x - \alpha_n)g(x)$ donc deg(g) = 0, donc $g(x) = \lambda, \lambda \in \mathbb{K}$

5 Applications

6 Compléments

6.1 Polynômes-Fonctions polynômes

Quelle est la différence entre un polynôme et une fonction polynôme?

Définition: (POLYNÔME)

Soit \mathbb{K} un anneau commutatif unitaire. Un **polynôme** à une indéterminée à coefficients dans \mathbb{K} est une suite finie $(a_n)_{n\in\mathbb{N}}$ nulle à partir d'un certain rang (ex : $(a_0, a_1, ..., a_n, 0, ..., 0, ...)$), munie de la structure usuelle :

$$- (a_i) + (b_i) = (a_i + b_i), i = 1...n$$

- $\lambda(a_i) = (\lambda a_i), i = 1...n$

Les suites $e_0 = (1, 0, 0, ...), e_1 = (0, 1, 0, ...), e_2 = (0, 0, 1, 0, ...), ..., e_n = (0, ..., 0, 1, 0, ...)$ forment une base de \mathbb{K} : $(a_n)_n = \sum_{n \ge 0} a_n e_n$

Or
$$e_1^2 = (0, 0, 1, ...) = e_2$$
, $e_1^3 = (0, 0, 1, ...) = e_3$,..., $e_1^n = (0, ..., 0, 1, 0...) = e_n$ et $e_1^0 = e_0$
Donc tout polynôme s'écrit : $(a_n)_n = \sum_{n \ge 0} a_n e_1^n$, soit en posant $X = e_1$:

$$(a_n)_n = \sum_{n \geqslant 0} a_n X^n$$

6.2 Une fonction bien pratique

 Ω est clairement un homomorphisme surjectif, et :

$$\Omega$$
 injective $\iff \mathbb{K}$ infini (1)

Ainsi, si \mathbb{K} est infini (ex : \mathbb{R} ou \mathbb{C}), les polynômes seront identifiés aux fonctions polynômes. (dans \mathbb{R} ou \mathbb{C} , on écrira $f \in \mathcal{P}(\mathbb{R})$ ou $f \in \mathbb{R}[X]$ même si pas "vraiment" la même chose). Contre exemple : $\mathbb{Z}/8\mathbb{Z}$ (Ω non injectif)

preuve:

 $\overline{-\mathrm{si}\ \mathbb{K}\ \mathrm{est}\ \mathrm{fini}}$, $\mathbb{K}=\{x_1,...,x_q\}$

 $P(X) = (X - x_1).(X - x_2)...(X - x_q) = X^q + ... \text{ donc } P \not\equiv 0 \text{ mais } \tilde{P}(x) = 0, \forall x \in \mathbb{K}, \text{ donc } \Omega(P) = 0 \Rightarrow P = 0, \text{ donc } \mathbb{K} \text{ fini } \Rightarrow \Omega \text{ non injective.}$

-si \mathbb{K} infini, $P \in \mathbb{K}[X]$, $\forall x \in \mathbb{K}$, $\tilde{P}(x) = 0$ (infinité de racines dans \mathbb{K}).

Or un polynôme de degré $\leq n$ admet au plus n racines (sauf le polynôme nul) donc Ω est injective.

 $\mathbb{K}[X]$: ensemble des polynômes à une indéterminée

 $\mathcal{P}(\mathbb{K})$ ensemble des fonctions polynômes

Si \mathbb{K} corps, alors $\mathbb{K}[x]$ ev

6.3 Importance de l'unicité de l'écriture polynomiale

Si l'on ne montre pas l'uncité de l'écriture polynômiale, on ne peut pas parler de degré d'un polynôme (ie on raconte n'importe quoi!) :

Soit
$$f(x) = \sum_{k=0}^{n} a_k cos^k x + b_k sin^k x$$
 que l'on appellera polynôme trigonométrique

 $cos^4 - sin^4$ "est de degré 4"

or $\cos^4 - \sin^4 = \cos^2 - \sin^2$ donc "est degré 2" d'où le problème!

On ne peut pas définir le degré d'un polynôme trigonométrique, car il n'y a pas décomposition de l'écriture polynômiale.

6.4 La convention $deg(0) = -\infty$

Pourquoi prendre comme convention : $deg(0) = -\infty$? On connait les règles :

deg(f + g) = max(deg(f), deg(g))

deg(f.g) = deg(f) + deg(g) pour tout f, g non identiquement nulles

On peut étendre ces règles avec le polynôme nul avec la convention $deg(0) = -\infty$, en ajoutant deux "règles"

$$-\infty + n = -\infty \ \forall n$$
$$-\infty < 0$$

6.5 Exercices et applications

6.5.1 Exercice 1

Montrer qu'une fonction T-périodique admet une infinité de racines.

f(x+T)=f(x) donc f(x+T)-f(x)=0, donc si α racine de f, $f(\alpha+T)-f(\alpha)=f(\alpha+T)=0$ donc $\alpha+T$ solution, donc f admet une infinité de racines : $\alpha+kT$, $k\in\mathbb{Z}$

6.5.2 Exercice 2

Montrer que $\mathcal{P}(\mathbb{K})$ anneau intègre

Soient f, g deux fonctions polynômes tq. $f.g = 0 \Rightarrow deg(f.g) = -\infty$ or deg(f.g) = deg(f) + deg(g)Donc $(deg(f) = -\infty)$ et deg(g) = 0 ou $(deg(g) = -\infty)$ et deg(f) = 0 donc $f \equiv 0$ ou $g \equiv 0$ donc $f \equiv 0$ anneau intègre.

6.5.3 Exercice 3

Soit f une fonction polynôme sur \mathbb{K} de coefficients (a_p) .

Montrer que:

- (i) f est paire $\Leftrightarrow \forall p \in \mathbb{N}, a_{2p+1} = 0$
- (ii) f est impaire $\Leftrightarrow \forall p \in \mathbb{N}, a_{2p} = 0$

(i)
$$f(x) = -f(x) \Leftrightarrow \sum_{p=0}^{n} a_p x^p = \sum_{p=0}^{n} a_p (-x)^p, \ \forall x \in \mathbb{K} \Leftrightarrow \sum_{p=0}^{n} (a_p - (-1)^p a_p) x^p \Leftrightarrow a_p - (-1)^p a_p = 0, \ \forall p \in \mathbb{N}$$

$$\Leftrightarrow$$
 $(a_{2k} = a_{2k} \text{ et } a_{2k+1} = -a_{2k}, \forall k \in \mathbb{N}) \Leftrightarrow a_{2k+1} = 0, \forall k \in \mathbb{N}.$ (ii) idem

6.5.4 Exercice 4

Soit f une fonction polynôme sur \mathbb{C} , de coefficients (a_p) tq. $\forall x \in \mathbb{R}$, on ait $f(x) \in \mathbb{R}$. Montrer que $\forall p, a_p \in \mathbb{R}$.

$$\forall x \in \mathbb{R}, f(x) = \overline{f(x)} \Leftrightarrow a_0 + \dots + a_n x^n = \overline{a_0 + \dots + a_n x^n}, \forall x \in \mathbb{R} \Leftrightarrow (a_0 - \overline{a_0}) + \dots + (a_n - \overline{a_n}) x^n = 0, \forall x \in \mathbb{R} \Leftrightarrow \forall p \in \mathbb{N}, a_p - \overline{a_p} = 2i.Im(a_p) = 0 \Leftrightarrow \forall p \in \mathbb{N}, a_p \in \mathbb{R}$$

6.5.5 Exercice 5

Soit
$$p \in \mathbb{N}^*$$
, $a \in \mathbb{K}$. Montrer que $\forall x \in \mathbb{K}$, $(x^p - a^p) = (x - a).(x^{p-1} + ... + a^k x^{p-1-k} + ... + a^{p-1})$

$$(x-a).(x^{p-1}+\ldots+a^kx^{p-1-k}+\ldots+a^{p-1})=x^p+ax^{p-1}+a^2x^{p-2}+\ldots+a^{p-2}x^2+a^{p-1}x\\-ax^{p-1}-a^2x^{p-2}-\ldots-a^{p-1}x-a^p=x^p-a^p$$

6.5.6 Exercice 6

Montrer que la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ n'est pas une fonction polynôme. $x \mapsto \sqrt[3]{\sqrt{x}}$

On raisonne par l'absurde : si f est une fonction polynôme, comme $f \not\equiv 0$, $deg(f) \geqslant 1$ or $((\sqrt{x})^{\frac{1}{3}})^3 = x$ donc $deg(x) = 1 = deg((\sqrt{x}^{\frac{1}{3}})^3) = 3.deg(\sqrt{x}^{\frac{1}{3}}) \geqslant 3$ contradiction Donc f n'est pas une fonction polynôme.

6.5.7 Exercice 7

Montrer que les éléments inversibles de l'anneau $\mathcal{P}(\mathbb{K})$ sont les fonctions constantes nons nulles.

Soit f inversible d'inverse g, $f \not\equiv 0$ (car f inversible).

On a : f.g = Id ie f.g(x) = 1 (1 étant le polynôme unité pour la loi ".") donc deg(f) + deg(g) = 0. Or $deg(f) \ge 0$ et $deg(g) \ge 0$ (par hypothèse), donc deg(f) = deg(g) = 0 donc f est une fonction constante non nulle.

6.6 Autres démonstrations de la propriété fondamentale

Il est possible de démontrer la propriété fondamentale d'autres façons, mais on a besoin de la dérivabilité de la fonction polynôme ou de sa continuité (propriétés que l'on voit plsu tard dans la leçon).

6.6.1 Par la dérivabilité

Soit
$$\forall x \in \mathbb{K}$$
, $f(x) = \sum_{i=0}^{n} a_i x^i = 0$. Or f est C^{∞} , donc:

$$\begin{cases} f(0) = 0 \Rightarrow a_0 = 0 \\ f'(0) = 0 \Rightarrow a_1 = 0 \\ \dots \\ f^k(0) = 0 \Rightarrow a_k = 0 \\ \dots \end{cases}$$

Donc
$$a_0 = ... = a_n = 0$$

6.6.2 Par la continuité

Soit
$$\forall x \in \mathbb{K}$$
, $f(x) = \sum_{i=0}^{n} a_i x^i$. On a : $f(0) = 0 \Rightarrow a_0 = 0$

Donc $f(x) = a_1x + ... + a_nx^n = 0$ donc pour $x \neq 0$, $a_1 + ... + a_nx^{n-1} = 0$

Soit $g(x) = a_1x + ... + a_nx^{n-1}$ (que l'on définie si $x \neq 0$); g est continue en 0 (quitte à la prolonger par continuité en

0), donc:

$$0 = \lim_{x \to 0} g(x) = g(0) = a_1$$

Donc $a_1 = 0$. On refait le même raisonnement, et par suite : $a_0 = ... = a_n = 0$

6.7 preuve

Proposition: Soit n un entier, soit f une fonction polynôme de degré n, $\forall k \in [0, n]$, f_k est une fonction polynôme de degré k. Alors il existe un unique $(n + 1) - \mathbb{K}$ uplets $(a_0, ..., a_n)$ tq. $f = a_0 f_0 + ... + a_n f_n$ avec $a_n \neq 0$

<u>preuve</u>: on va montrer que $\{f_0, ..., f_n\}$ est une base de $\mathbb{K}_n[X]$ (ev : ensemble des fcts. polynômes de degrés <u>inférieurs</u> ou égauxs à n+1)

Soit $(\alpha_0, ..., \alpha_n) \in \mathbb{K}^{n+1}$ tq. $\alpha_0 f_0 + ... + \alpha_n f_n = 0$

On a donc $-\alpha_n f_n = \alpha_0 f_0 + ... + \alpha_{n-1} f_{n-1}$

si $\alpha_n \neq 0$, alors $-\alpha_n f_n$ est un polynôme de degré n et $\alpha_0 f_0 + ... + \alpha_{n-1} f_{n-1}$ est un polynôme de degré degré inférieur ou égal à n-1, ce qui est absurde, donc $\alpha_n = 0$. Par suite, $\alpha_0 = ... = \alpha_n = 0$

Donc $\{f_0, ..., f_n\}$ est une famille libre de $\mathbb{K}_n[X]$; or $dim(\mathbb{K}_n)[X]$) = n, donc $\{f_0, ..., f_n\}$ est une base de $\mathbb{K}_n[X]$