Exposé 3: Coefficients binômiaux, dénombrement des combinaisons, formule du binôme. Applications

Prérequis¹:

- -Notions d'ensemble fini
- -Cardinal
- -Définitions des p-arrangements d'un ensemble $\mathcal A$ de cardinal n
- -Raisonnement par récurrence

1 **Combinaisons**

Définition 1

Soit \mathcal{A} un ensemble fini. On appelle combinaison de p-éléments de \mathcal{A} (ou p-combinaison) toute partie de \mathcal{A} à p éléments.

 $rq: la \ partie \{a, b\} = la \ partie \{b, a\}$

Théorème 1

Le nombre de p-combinaisons d'un ensemble à n-éléments se note C_n^p (ou (n,p)) et se lit "nombre de combinaisons de p parmi n".

$$C_n^p = \frac{n!}{p!(n-p)!}$$

preuve

Soit C_n^p l'ensemble des p-combinaisons de \mathcal{A} , avec $card(\mathcal{A}) = n$

Soit d l'ensemble des p-arrangements de \mathcal{A}

 $|d| = \frac{n!}{(n-p)!}$ (|d| est souvent noté A_n^p ; dans \mathcal{A} l'ordre des éléments est indifférents). Or il y a p!

permutations possible des éléments d'un *p*-arrangement, d'où $C_n^p = \frac{\mathcal{A}}{p!} = \frac{n!}{p!(n-p)!}$

Remarque : $C_n^p = 0$, $\forall p > n$ (nombre de parties à p éléments parmi n, p > n? Aucune...)

Coefficients binômiaux 2

Propriétés

1)
$$C_n^n = C_n^0 = 1$$

2)
$$C_n^p = C_n^{n-p}$$

1)
$$C_n^n = C_n^0 = 1$$

2) $C_n^p = C_n^{n-p}$
3) $C_n^p + C_n^{p+1} = C_{n+1}^{p+1}$ ie $C_n^p + C_n^{p-1} = C_{n+1}^p$
4) $C_n^p = \frac{n}{p}C_{n-1}^{p-1}$

4)
$$C_n^p = \frac{n}{p} C_{n-1}^{p-1}$$

Soit en utilisant $C_n^p = \frac{n!}{p!(n-p)!}$, soit de manière plus naturelle :

¹L'exposé a été présenté à Bordeaux(1) en octobre 2004 par Blandine, corrigée par M.A, et a été tapé par Gwendal Haudebourg. Mise à jour le 31/07/2007

- 1) Combien y a t-il de parties à 0 éléments dans *n*-éléments ? Il y en a une seule (celle qui ne contient aucun éléments) d'où le résultat
- 2) A chaque fois que je choisis une partie à p-éléments, il lui correspond une partie à n-p éléments.
- 3) Soit E, |E| = n + 1, $a \in E$ fixé. Alors toute partie de E à p éléments est soit une partie de $E \{a\}$ à p éléments, soit $\{a\} \cup P$ où |P| = p 1 et $a \notin P$

remarque : La relation 3) fournit un moyen de calculer "de proche en proche" les coefficients C_n^p permettant de construire le triangle de Pascal.

Le triangle de Pascal

Les nombres réels C_n^p sont généralement présentés dans un tableau triangulaire où n est l'indice de ligne et p l'indice de colonne. Il se contruit de proche en proche grâce aux valeurs $C_n^0 = C_n^n = 1$ et grâce à la relation $C_n^p + C_n^{p+1} = C_n^{p+1}$. Ce tableau est appelé triangle de Pascal.

Théorème 2 (Formule du binôme de Newton)

Si a et b sont deux éléments qui commutent entres eux, alors $\forall n \in \mathbb{N}$, on a :

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

preuve

Soit par récurrence (mais pour cette preuve, il faut connaître la formule avant de la démontrer) : n = 0 évident, on suppose la relation ci-dessus. Puis :

$$(a+b)^{n+1} = \left(\sum_{k=0}^{n} C_n^k a^k b^{n-k}\right) (a+b) = \left(\sum_{k=0}^{n} C_n^k a^{k+1} b^{n-k}\right) + \left(\sum_{k=0}^{n} C_n^k a^k b^{n-k+1}\right)$$

$$= \left(\sum_{k=0}^{n-1} C_n^k a^{k+1} b^{n-k}\right) + \left(\sum_{k=1}^{n} C_n^k a^k b^{n-k+1}\right) + a^{n+1} + b^{n+1}$$

$$= \left(\sum_{k=0}^{n-1} (C_n^k + C_n^{k+1}) a^{k+1} b^{n-k} + a^{n+1} + b^{n+1}\right) = \sum_{k=0}^{n-1} C_n^k a^{k+1} b^{n-k}$$

Soit plus naturellement, par le dénombrement :

 $(a+b)^n = (a+b)...(a+b)$ les termes du second membres sont de la forme a^kb^{n-k} (si on prend a k-fois, on prend nécessairement b - k fois)

Le terme a^k est choisi dans k facteur parmi n éléments, il y a C_k^n façon de placer ces éléments, donc le second membre est $\sum_{k=0}^{n} C_n^k a^k b^{n-k}$.

3 Applications

3.1 Jeu de cartes

Soit un jeu de 32 cartes. On appelle main un ensemble de 5 cartes.

- (i) Combien y a t-il de mains différentes?
- (ii) Combien y a t-il de mains à 3 coeurs et 2 trèfes?
- (iii) Combien y a t-il de mains à au moins 2 carreaux?
- (iv) Combien peut-on déterminer de mains de 5 cartes contenant exactement 1 roi et 2 dames ? Solutions : (i) $C_{32}^5(ii)C_8^3.C_8^2$ (iii) on passe par le complémentaire (avoir exactement 0 carreau ou exactement 1 carreau) : $C_{32}^5 (C_8^0.C_{24}^5 + C_8^1.C_{24}^4)$ (iv) $C_4^1.C_4^2.C_{24}^2 = 6624$ (32-8=24 les autres cartes examinées ne sont ni des rois, ni des dames...).

3.2 Pile de boulets

Combien existe t-il de boulets sphériques dans une pile de forme pyramidale, dont la base est un triangle équilatéral de *n* boulets de côtés ?

solution : la base contient $1 + 2 + ... + n = \frac{n(n+1)}{2} = C_{n+1}^2$ donc $C_{n+1}^2 + C_n^2 + ... + C_2^2 = C_{n+1}^2 + C_{n+1}^3 = C_{n+2}^3$ boulets. On a quand même besoin de (i) :

$$\sum_{k=p}^{n} C_k^p = C_{n+1}^{p+1}$$

preuve de (i): on a $C_{n+1}^{p+1} = C_n^{p+1} + C_n^p = C_{n-1}^{p+1} + C_{n-1}^p + C_n^p = C_{n-2}^{p+1} + C_{n-2}^p + C_{n-1}^p + C_n^p = \dots = \sum_{k=p}^n C_k^p$ (le faire proprement par récurrence).

on peut aussi le démontrer par le dénombrement (plus intuitif, mais pas évident...)

3.3 Trigonométrie

: $\forall \in \mathbb{N}$, $\cos(nx)$ peut s'écrire sous la forme de degré n en $\cos(x)$.

preuve: $\forall x \in \mathbb{R}$, $\cos(nx) + i\sin(nx) = (\cos(x) + \sin(x))^n$ (formule de Moivre) $= \sum_{k=0}^n C_n^k (\cos(x))^{n-k} (i\sin(x))^k$ (formule du binôme) $= \sum_{k=0}^n C_n^k (\cos(x))^{n-k} (i)^k (\sin(x))^k$

En identifiant les parties réelles et imaginaires, on obtient : $\cos(nx) = \sum_{k=0}^{\left[\frac{n}{2}\right]} C_n^{2k} (-1)^{2k} (\sin(x))^{2k} (\cos(x))^{n-2k}$ = $\sum_{k=0}^{\left[\frac{n}{2}\right]} C_n^{2k} (-1)^{2k} (1 - \cos(x))^{2k} (\cos(x))^{n-2k}$

Remarque: on a un résultat analogue pour la fonction sin

3.4 Inégalité de Bernouilli

Pour tout $x \in \mathbb{R}_+, \forall \in \mathbb{N}, (1+x)^n \ge 1 + nx$

preuve: $(1+x)^n = \sum_{k=0}^n x^k = 1 + nx + ... \ge 1 + nx$ car $x \ge 0$

3.5 Formule de Leibniz

cf. leçon 75 : $(fg)^n = \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k)}$

3.6 Le petit théorème de Fermat

Théorème: soit p un nombre premier. Alors $\forall a \in \mathbb{N}, a^p \equiv [p]$

preuve: $C_p^k = \frac{p!}{(p-k)!k!}$ pour tout $k \in 0, ..., p$ et $kC_p^k = pC_{p-1}^{k-1}$ par (4), donc $p|kC_p^k$. Or pgcd(p,k) = 1 pour k < p donc $p|C_p^k$ (lemme de Gauss).

Montrons maintenant par récurrence le théorème de Fermat :

-pour a = 0 ok

-supposons la propriété vraie jusqu'au rang p (récurrence forte). Alors $(a+1)^p = \sum_{k=0}^p C_p^k a^k = 1 + a^p + C_p^1 a + ... + C_p^{p-1} a^{p-1} = (1+a^p)[p]$ (par l'HR, et car $p|C_p^k$) = (1+a)[p] (par l'hypothèse au rang p).

Donc la propriété est vraie au rang p+1. Donc par le théorème de récurrence, la propriété est vraie pour tout $a \in \mathbb{N}$

Remarque : marche aussi pour $A \in \mathbb{Z}$

4 Questions-Con	ıpléments
-----------------	-----------