Exposé 36 : Théorème de l'angle inscrit : ensemble des points M du plan tels que l'angle orienté de droites ou de demi-droites (MA,MB) soit constant. Cocyclicité. Applications

Prérequis¹: -Angle orienté, relation de Chasles -Pour tout triangle \overrightarrow{ABC} , $(\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{BC}, \overrightarrow{BA}) + (\overrightarrow{CA}, \overrightarrow{CB}) = \pi [2\pi]$

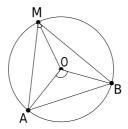
 $\underline{\operatorname{Cadre}}$: on se place dans un plan affine euclidien orienté $\mathcal P$

Le théorème de l'angle inscrit est aussi appelé théorème de l'angle au centre.

Pour bien faire, il aurait fallu marquer chacun des angles par \overrightarrow{AC} , \overrightarrow{AB} (petit chapeau). Mais c'est un peu long...

1 Théorème de l'angle inscrit(angle au centre)

Théorème 1: soit \mathcal{C} un cercle de centre O, $A, B \in \mathcal{C}$, $A \neq B$. Alors pour tout point $M \in \mathcal{C}$ distinct de A et B, $(\overrightarrow{OA}, \overrightarrow{OB}) = 2(\overrightarrow{MA}, \overrightarrow{MB})$ $[2\pi]$



preuve : la somme des angles orientés du triangle MAO est égale à π :

$$(\overrightarrow{MA}, \overrightarrow{MO}) + (\overrightarrow{AO}, \overrightarrow{AM}) + (\overrightarrow{OM}, \overrightarrow{OA}) = \pi \ [2\pi]. \text{ Or } MAO \text{ triangle isocèle, donc } (\overrightarrow{MA}, \overrightarrow{MO}) = (\overrightarrow{AO}, \overrightarrow{AM})) \ [2\pi] \text{ d'où } 2(\overrightarrow{MA}, \overrightarrow{MO}) + (\overrightarrow{OM}, \overrightarrow{OA}) = \pi \ [2\pi]).$$

De même, en considérant le triangle isocèle MOB, on obtient : $2(\overrightarrow{MO}, \overrightarrow{MB}) + (\overrightarrow{OB}, \overrightarrow{OM}) = \pi [2\pi]$. En ajoutant ces deux égalités, on obtient :

$$2(\overrightarrow{MA}, \overrightarrow{MO}) + 2(\overrightarrow{MO}, \overrightarrow{MB}) + (\overrightarrow{OM}, \overrightarrow{OA}) + (\overrightarrow{OB}, \overrightarrow{OM}) = 0 [2\pi] \text{ d'ou par la relation de Chasles} :$$

$$2(\overrightarrow{MA}, \overrightarrow{MB}) + (\overrightarrow{OB}, \overrightarrow{OA}) = 0 [2\pi].$$

remarque : lorsque "l'on met" le point M de l'autre côté, il semble tout d'abord que le théorème est faux modulo 2π . Il n'en est rien! Il faut faire attention de quel angle il s'agit. Une autre formulation plus claire est : si $(\overrightarrow{MA}, \overrightarrow{MB})$ et $(\overrightarrow{OA}, \overrightarrow{OB})$ intersectent le même arc, alors on a la relation voulue...

Corollaire 1 : soit C un cercle de centre O, $A, B \in C$, $A \neq B$. Alors pour tout point $M, N \in C$ distinct de A et B, $(\overrightarrow{MA}, \overrightarrow{MB}) = (\overrightarrow{NA}, \overrightarrow{NB})[\pi]$

preuve : soient
$$N, M, A, B$$
 quatre points distincts cocycliques sur $\mathcal{C}(O, r)$. Alors $2(\overrightarrow{NB}, \overrightarrow{NA})$ = $(\overrightarrow{OB}, \overrightarrow{OA}) = 2(\overrightarrow{MB}, \overrightarrow{MA})[\pi]$ par le théorème 1.

 $^{^1\}mathrm{L}$ 'exposé a été présenté à Bordeaux(1) en 2004, corrigé par M.C. Tapée par Gwendal, réalisé avec LATEX. Mise à jour le 26/06/2006.

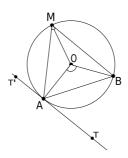
Définition (ANGLE AU CENTRE, ANGLE INSCRIT) :

Soit \mathcal{C} un cercle de centre O, et A, B distincts de \mathcal{C} . Pour tout point $M \in \mathcal{C}$, l'angle $(\overrightarrow{MA}, \overrightarrow{MB})$ est appelé angle inscrit dans \mathcal{C} , et l'angle $(\overrightarrow{OA}, \overrightarrow{OB})$ est appelé angle au centre correspondant.

2 Théorème de la tangente

Théorème 2 (DE LA TANGENTE) :

Soit \mathcal{C} un cercle de centre O, $A, B \in \mathcal{C}$, $A \neq B$, et soit Δ_A la tangente en A au cercle \mathcal{C} . Alors : $T \in \Delta_A - \{A\} \Leftrightarrow 2(\overrightarrow{AT}, \overrightarrow{AB}) = (\overrightarrow{OA}, \overrightarrow{OB})[2\pi]$



 $2(\overrightarrow{AT}, \overrightarrow{AB}) = (\overrightarrow{OA}, \overrightarrow{OB}) [2\pi] \Rightarrow 2(\overrightarrow{AT}, \overrightarrow{AT}') = 0 [2\pi] \Rightarrow \overrightarrow{AT} \text{ et } \overrightarrow{AT}' \text{ sont colinéaires, donc}$ $T \in \Delta_A - \{A\}.$

3 Cocyclicité de quatre points

Théorème 3 (Cocyclicité):

Soient A, B, C, D quatres points distincts non-alignés A, B, C, D. Alors : A, B, C, D cocycliques $\iff (\overrightarrow{CA}, \overrightarrow{CB}) = (\overrightarrow{DA}, \overrightarrow{DB}) [\pi]$

preuve :

 $\overrightarrow{(\Rightarrow)}$ Soient A, B, C, D quatres points distincts cocycliques. Alors par le corollaire 1, on a $(\overrightarrow{CA}, \overrightarrow{CB}) = (\overrightarrow{DA}, \overrightarrow{DB})[\pi]$

(⇐) Soit Γ le cercle de centre O passant par A, B, C, Γ' le cercle de centre O' passant par A, B, D (donc $\{A, B\} \subset \Gamma \cap \Gamma'$). Soit \mathcal{T}_A la tangente en A à Γ , \mathcal{T}'_A la tangente en A à Γ' , soit $T \in \mathcal{T}_A$, $T \neq A$. Alors $2(\overrightarrow{AT}, \overrightarrow{AB}) = (\overrightarrow{OA}, \overrightarrow{OB}) = 2(\overrightarrow{CA}, \overrightarrow{CB})$ [2π] (théorème de la tangente). Or par hypothèse $2(\overrightarrow{AT}, \overrightarrow{AB}) = 2(\overrightarrow{DA}, \overrightarrow{DB}) = (\overrightarrow{OA}, \overrightarrow{OB})$ [2π] (théorème de l'angle inscrit) donc $T \in \mathcal{T}'_A$. D'où $T \in \mathcal{T}_A$, $T \in \mathcal{T}'_A$, $A \in \mathcal{T}_A$ et $A \in \mathcal{T}'_A$ et $T \neq A$, donc $T'_A = T_A$. Ainsi les cercles Γ et Γ' ont deux points communs A et B, et une tangente commune au même point A. Ces deux cercles sont donc confondus.

4 Cercle capable-Arc capable

4.1 Cercle capable

Théorème 4-1 (DU CERCLE CAPABLE)

Soient $\alpha \in \mathbb{R}$, A,B deux points distincts du plan euclidien orienté. Soit

$$\mathcal{C}_{\alpha} = \left\{ M \in \mathcal{P} - \{A, B\}, (\overrightarrow{MA}, \overrightarrow{MB}) = \alpha [\pi] \right\}$$

Si $\alpha = 0 [\pi]$, alors \mathcal{C}_{α} est la droite (AB) privée des points A et B

Si $\alpha \neq 0$ $[\pi]$, alors C_{α} est $C - \{A, B\}$ où C est le cercle passant par A et B dont la tangente (AT) en A vérifie $(\overrightarrow{AT}, \overrightarrow{AB}) = \alpha [\pi]$.

Définition (CERCLE CAPABLE) : le cercle ainsi trouvé \mathcal{C}_{α} est appelé cercle capable d'angle α du couple (A,B).

Noter que le point T de la tangente peut-être pris d'un côté ou de l'autre de A sans que cela ne change quoi que ce soit au résultat.

preuve : (pour $\alpha \neq 0 [\pi]$)

(
$$\Leftarrow$$
) soit M un point du cercle C en question. $2(\overrightarrow{MA}, \overrightarrow{MB}) = (\overrightarrow{OA}, \overrightarrow{OB}) = 2(\overrightarrow{AT}, \overrightarrow{AB})[2\pi] \Rightarrow (\overrightarrow{MA}, \overrightarrow{MB}) = \alpha [\pi]$

$$(\Rightarrow)$$
 Réciproquement, soit $M_O \in \mathcal{C}$ donc $(\overline{M_OA}, \overline{M_OB}) = \alpha[\pi]$. Soit M tel que $(\overline{MA}, \overline{MB}) = \alpha[\pi]$, donc $(\overline{M_OA}, \overline{M_OB}) = (\overline{MA}, \overline{MB})$ donc A, B, M_O, M sont cocycliques, donc $M \in \mathcal{C}$

4.2Arc capable

Théorème 4-2 (DE L'ARC CAPABLE) :

Soient $\alpha \in \mathbb{R}$, A, B deux points distincts du plan euclidien orienté et α un réel, soit

$$\mathcal{T}_{\alpha} = \left\{ M \in \mathcal{P} - \left\{ A, B \right\}, (\overrightarrow{MA}, \overrightarrow{MB}) = \alpha \left[2\pi \right] \right\}$$

Si $\alpha = 0 \left[2\pi \right], \mathcal{T}_{\alpha} = (AB) - [AB]$

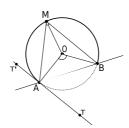
Si
$$\alpha = 0 [2\pi], \mathcal{T}_{\alpha} = (AB) - [AB]$$

Si
$$\alpha = \pi [2\pi], \mathcal{T}_{\alpha} =]AB[$$

Si $\alpha \neq 0 [\pi]$, alors \mathcal{T}_{α} est l'arc de cercle ouvert \widehat{AB} du cercle capable \mathcal{C}_{α} contenu dans le demi-plan ouvert de frontière \widehat{AB} ne contenant pas T (où \mathcal{T}_A est la tangente à $\mathcal{C}_{[A,B]}$ au point $A, T \in \mathcal{T}_A$ tel que $(\overrightarrow{AT}, \overrightarrow{AB}) = \alpha [2\pi]).$

Définition (ARC CAPABLE) :

Cet arc de cercle ainsi trouvé est appelé arc capable d'angle α du couple (A, B). L'autre arc ouvert \widehat{AB} est l'arc capable d'angle $\alpha + \pi$ ou encore $\alpha - \pi$ du couple (A, B).



Sur la tangente, T doit être d'un côté de A bien précis, **déterminé par la condition angulaire**.

preuve : on a :

dessous de la droite (AB).

$$\mathcal{C}_{\alpha} := \left\{ M \in \mathcal{P}, (\overrightarrow{MA}, \overrightarrow{MB}) = \alpha \left[\pi \right] \right\} = \left\{ M\mathcal{P}, (\overrightarrow{MA}, \overrightarrow{MB}) = \alpha \left[2\pi \right] \right\} \bigcup \left\{ M\mathcal{P}, (\overrightarrow{MA}, \overrightarrow{MB}) = \alpha + \pi \left[2\pi \right] \right\}$$

$$=: \mathcal{T}_{\alpha} \cup \mathcal{T}_{2}$$

 \mathcal{T}_{α} est donc une partie du cercle \mathcal{C}_{α} précédemment déterminé.

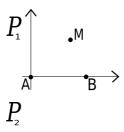
Or, si la mesure principale d'un angle $(\overline{M}A, \overline{M}B)$ défini modulo 2π pour un point $M \in \mathcal{T}_{\alpha}$ appartient à $]0,\pi[$ (resp. $]-\pi,0[$), celle d'un angle analogue (pour le même α) pour un point $M'\in\mathcal{T}_2$ appartient à $]-\pi,0[$ (resp. $]0,\pi[$). Ceci signifie que les angles $(\overrightarrow{MA},\overrightarrow{MB})$ pour $M\in\mathcal{T}_{\alpha}$ et (M'A,M'B) pour $M'\in\mathcal{T}_{2}$ sont de sens opposés. Les angles $(\overrightarrow{MA}, \overrightarrow{MB})$ et $(\overrightarrow{AB}, \overrightarrow{AM})$ étant de même sens (par Chasles), changer de sens pour (MA, MB) équivaut à changer de demi-plan défini par la droite (AB) et par le point M. Ainsi \mathcal{T}_{α} est l'un des arcs délimité par A et B sur le cercle \mathcal{T} , et \mathcal{T}_2 est l'autre (il suffit de voir si, modulo 2π , $\alpha \in]0, \pi[$ ou $]-\pi, 0[)$:

Soit $(\overrightarrow{MA}, \overrightarrow{MB}) = \alpha [2\pi]$. Alors $det(\overrightarrow{MA}, \overrightarrow{MB}) = MA.MB \sin(\alpha)$. De plus² $det(\overrightarrow{TA}, \overrightarrow{TB}) = -det(\overrightarrow{AT}, \overrightarrow{AB}) = -AT.AB\sin(\alpha) \text{ donc } det(\overrightarrow{MA}, \overrightarrow{MB}) \text{ et } det(\overrightarrow{TA}, \overrightarrow{TB}) \text{ sont de signes}$ différents, donc par le lemme (qui suit), T et M sont sur les demis-plans différents (au dessus ou en

En prenant $T \in \Delta_A$ (tangente au cercle en A) d'un côté précis de A, on en déduit donc \mathcal{T}_{α} .

² pour se convaincre, passer en analytique dans le repère d'origine A: A(0,0), B(a,0), T(x,y)

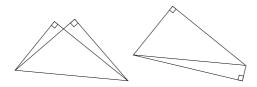
Lemme: $det(\overrightarrow{MA}, \overrightarrow{MB})$ garde un signe constant sur \mathcal{P}_1 et \mathcal{P}_2 , ces deux signes étant opposés, car : M(x,y) A(0,0) B(a,0) $\overrightarrow{MA} = (-x,-y)$ $\overrightarrow{MB} = (a-x,-y)$ $det(\overrightarrow{MA}, \overrightarrow{MB}) = ay = MA.MB \sin(\overrightarrow{MA}, \overrightarrow{MB})$ (ie ne dépend que de l'ordonnée de M). Cela sert comme méthode pratique pour voir la position relative de deux points (sont-ils ou non dans le même plan?).



5 Applications

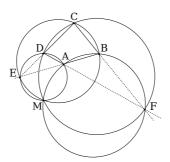
5.1 Les deux configurations de base

Dans les deux cas suivants, les quatres points sont cocycliques



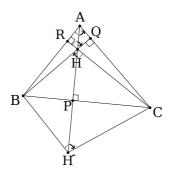
5.2 Point de Miquel

Soit A, B, C, D un quadrilatère convexe. On suppose (AB) et (CD) se coupant en E, et (AD) et (BC) se coupant en E en E



5.3 Symétrique de l'orthocentre

Montrer que le symétrique de l'othocentre H d'un triangle non plat ABC par rapport à un côté du triangle se trouve sur le cercle circonscrit



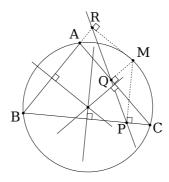
<u>preuve</u> : soit H' le symétrique de H par rapport à (BC). Alors les angles marqués sur la figure sont égaux à 2π près. En effet, la réflexion inverse les angles orientés, donc

 $(\overrightarrow{H'B}, \overrightarrow{H'C}) = -(\overrightarrow{HB}, \overrightarrow{HC}) = (\overrightarrow{HC}, \overrightarrow{HB}) = (\overrightarrow{HR}, \overrightarrow{HQ}) [2\pi]$. Or A, R, H, Q cocycliques (configuration de base), donc $(\overrightarrow{HR}, \overrightarrow{HQ}) = (\overrightarrow{AR}, \overrightarrow{AQ}) [\pi]$ d'où $(\overrightarrow{H'B}, \overrightarrow{H'C}) = (\overrightarrow{AR}, \overrightarrow{AQ}) [\pi]$ ie A, B, C, H' cocycliques. \square

5.4 Droite de Simson

Soit A, B, C un triangle, soit M un point de \mathcal{P} , soient P, Q, R les projetés orthogonaux de M sur (BC), (AC) et (AB). Alors :

P, Q, R alignés $\iff M \in \text{cercle circonscrit à } ABC$



preuve : les points M, P, C, Q sont cocycliques (configuration de base) donc

 $(\overrightarrow{PQ},\overrightarrow{PM}) = (\overrightarrow{CQ},\overrightarrow{CM}) = (\overrightarrow{CA},\overrightarrow{CM}) \ [\pi] \ . \ \text{De même} \ B,P,M,R \ \text{sont cocycliques, donc}$

 $(\overrightarrow{PM}, \overrightarrow{PR}) = (\overrightarrow{BM}, \overrightarrow{BR}) = (\overrightarrow{BM}, \overrightarrow{BA}) [\pi].$

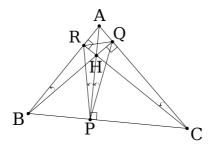
Ainsi $(\overrightarrow{PQ},\overrightarrow{PR})=(\overrightarrow{PQ},\overrightarrow{PM})+(\overrightarrow{PM},\overrightarrow{PR})$ $[2\pi]=(\overrightarrow{CA},\overrightarrow{CM})+(\overrightarrow{BM},\overrightarrow{BA})$ $[\pi]$.

Or $(\overrightarrow{CA}, \overrightarrow{CM}) = (\overrightarrow{BA}, \overrightarrow{BM})[\pi] \iff A, M, B, C$ cocycliques d'où l'équivalence cherchée.

Définition : (PQR) est appelée droite de Simson de M relativement au triangle ABC

5.5 Triangle orthique

Montrer que les côtés et les hauteurs de ABC non-plat sont les bissectrices du triangle RQP formé par les pieds des trois hauteurs de ABC.



Définition : le triangle PQR est appelé triangle orthique de ABC.

 $\underline{\text{preuve}}: \text{les points } B, R, P, H \text{ sont cocycliques (configuration de base), de même les points } R, Q, B, C \text{ et } \overline{H, Q, C}, P \text{ sont cocycliques, donc}:$

$$(\overrightarrow{PQ},\overrightarrow{PA}) = (\overrightarrow{PQ},\overrightarrow{PH})[2\pi] = (\overrightarrow{CQ},\overrightarrow{CH})[\pi]$$
. De même $(\overrightarrow{BQ},\overrightarrow{BR}) = (\overrightarrow{CQ},\overrightarrow{CR})[\pi]$ et $(\overrightarrow{PH},\overrightarrow{PR}) = (\overrightarrow{BH},\overrightarrow{BR})[\pi]$ d'où les angles orientés marqués sur le dessin, d'où le résultat.

6 Compléments