Exposé 24 : Théorème de Thalès. Applications à la géométrie du plan et de l'espace.

Prérequis¹ : -Mesure algébrique

-Calcul vectoriel

-Espaces affines et vectoriels -Géométrie élémentaire

Cadre de la leçon : $(\mathcal{E}, \overrightarrow{\mathcal{E}})$ espace affine.

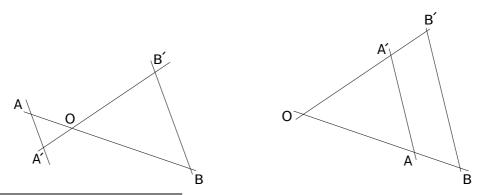
Rappel mesure algébrique : soit \mathcal{D} une droite de E, \overrightarrow{u} un vecteur directeur de \mathcal{D} . $\forall A, B \in \mathcal{D}$, il existe un unique scalaire λ tel que $\overrightarrow{AB} = \lambda \overrightarrow{u}$. Ce scalaire est appelé mesure algébrique du vecteur \overrightarrow{AB} relative au vecteur unité \overrightarrow{u} , et est noté \overline{AB} (ie $\overline{AB} = \frac{\overrightarrow{AB}}{\overrightarrow{u}}$).

1 Théorème de Thalès

Théorème de Thalès dans le triangle : soit deux triangles non applatis OAA' et OBB' tels que $A \in (OB)$ et $A' \in (OB')$, et tel que les droites (AA') et (BB') soient parallèles. Alors on a :

$$\frac{\overline{OA}}{\overline{OB}} = \frac{\overline{OA'}}{\overline{OB'}} = \frac{\overline{AA'}}{\overline{BB'}}$$

<u>preuve</u>: (AA') // (BB') donc $\exists k \in \mathbb{R}$ tq. $\overrightarrow{BB} = k.\overrightarrow{AA}$. Par hypothèse $A \in (OB)$ et $A' \in (OB')$ donc $\exists (\alpha, \alpha')$ tq. $\overrightarrow{OB} = \alpha.\overrightarrow{OA}$ et $\overrightarrow{OB'} = \alpha.\overrightarrow{OA'}$ or $\overrightarrow{BB'} = k.\overrightarrow{AA'}$, donc $\overrightarrow{OB'} - \overrightarrow{OB} = k.(\overrightarrow{OA'} - \overrightarrow{OA})$, donc $(k - \alpha)\overrightarrow{OA'} + (\alpha - k)\overrightarrow{OA} = 0$, or \overrightarrow{OA} et $\overrightarrow{OA'}$ sont linéairement indépendants (car O, A, A' ne sont pas alignés), donc $\alpha' = k = \alpha$. Donc $\overrightarrow{OB} = k.\overrightarrow{OA}$, $\overrightarrow{OB'} = k.\overrightarrow{OA'}$ et $\overrightarrow{BB} = k.\overrightarrow{AA'}$. On obtient l'égalité souhaité en choisissant les vecteurs directeurs des doites pour la mesure algébrique. □

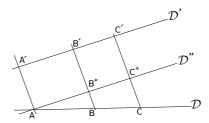


¹Exposé tapé et présenté par Gwendal Haudebourg à Bordeaux IV le 15/11/2006. Réalisé avec L^AT_EX, Inkscape pour les dessins. Leçon largement inspirée de celle de Johann.

Théorème de Thalès dans le plan: soit \mathcal{D} et \mathcal{D}' deux droites distinctes, A, B, C (respectivement A', B', C') trois points distincts appartenant à \mathcal{D} (respectivement à \mathcal{D}'), avec $A \neq A', B \neq B'$ et $C \neq C'$, et tel que (AA'), (BB') et (CC') soient parallèles. Alors on a :

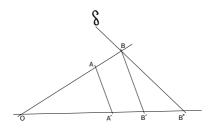
$$\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{A'B'}}{\overline{A'C'}}$$

preuve : on trace \mathcal{D}'' la parallèle à \mathcal{D}' passant par A. On a des parallélogrammes A'B'B''A et A'C'C''A, donc on a des égalitées vectorielles, et avec les triangles AB''B et AC''C non applatis, on se ramène au théorème de Thalès dans le triangle.



Théorème (réciproque du théorème de Thalès): soit (O, A, B, A', B') cinq points distincts d'un plan tels que O, A, B soient alignés, et O, A', B soient alignés. Si de plus on a $\frac{\overline{OA}}{\overline{OB}} = \frac{\overline{OA'}}{\overline{OB'}}$, alors les droites (AA') et (BB') sont parallèles.

<u>preuve</u>: soit B'' le point d'intersection de (OA') et de la droite δ parallèle à (AA') passant par B. D'après le théorème de Thalès, on a $\frac{\overline{OA}}{\overline{OB}} = \frac{\overline{OA'}}{\overline{OB''}}$. Donc $\frac{\overline{OA'}}{\overline{OB'}} = \frac{\overline{OA'}}{\overline{OB''}}$, donc $\overline{OB'} = \overline{OB''}$, donc B' = B'', donc B' = B''



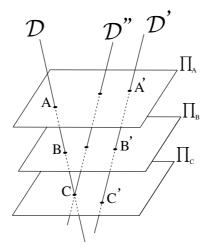
2 Applications

2.1 Théorème de Thalès (et réciproque) dans l'espace

Théorème: soit trois plans **parallèles** Π_A , Π_B et Π_C , une droite \mathcal{D} qui coupe respectivement ces plans en A, B et C, \mathcal{D}' une autre droite qui coupe respectivement ces plans en A', B' et C'. Alors: $\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{A'B'}}{\overline{A'C'}}$

<u>preuve</u> : on trace \mathcal{D}'' une droite parallèle à \mathcal{D}' passant par C. On applique le théorème de Thalès dans le <u>plan</u> formé par \mathcal{D} et \mathcal{D}'' (on se ramène à une configuration de Thalès dans le plan) puis utilisation des parallélogrammes.

2



Réciproque: soit A, B, C trois points d'une droite \mathcal{D} , et A', B' et C' trois points d'une seconde droite \mathcal{D}' ces six points sont supposés distincts deux à deux. Alors si $\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{A'B'}}{\overline{A'C'}}$, les droites (AA'), (BB') et (CC') sont parallèles à un même plan.

<u>preuve</u>: on trace Π_A , Π_B et Π_C des plans parallèles passant respectivement par A,B et C, de vecteurs directeurs $\overrightarrow{AA'}$ et $\overrightarrow{BB'}$ (ie Π_A est dirigée par $(\overrightarrow{AA'},\overrightarrow{BB'})$ passant par A, etc...). Le plan Π_A contient donc (AA'), Π_B contient donc (BB'), et Π_C coupe \mathcal{D}' en un point C''. Par le théorème de Thalès, on a donc: $\frac{\overrightarrow{AB}}{AC} = \frac{\overrightarrow{A'B'}}{A'C''}.$ Or $\frac{\overrightarrow{AB}}{AC} = \frac{\overrightarrow{A'B'}}{A'C'},$ donc C' = C'', donc le plan Π_C contient la droite (CC'), donc les plans Π_A , Π_B et Π_C passent par respectivement (AA'), (BB') et (CC'), et de mêmes vecteurs directeurs, donc ces trois plans sont parallèles.

rem : cette preuve est l'analogue de celle dans le plan.

2.2 Projection dans le plan

Définition (Projection) : Soit Δ et \mathcal{D} deux droites sécantes du plan \mathcal{P} . La projection sur \mathcal{D} parallèlement à Δ est l'application $p: \mathcal{P} \to \mathcal{P}$ tel que $M' \in \mathcal{D}$ et $(MM') /\!\!/ \Delta$ $M \mapsto M'$

remarque : un tel point M' existe et est unique puisque \mathcal{D} et Δ n'ont pas la même direction (car sont sécantes).

Proposition: $p \circ p = p$ et $Fix(p) = \mathcal{D}$

Théorème : l'application p est affine, autrement dit l'application vectorielle associée π :

$$\overrightarrow{P} \rightarrow \overrightarrow{P}$$
 où $M' = p(M)$ et $N' = p(N)$ est LINEAIRE.
 $\overrightarrow{u} = \overrightarrow{MN} \mapsto \overrightarrow{M'N'}$

remarque : le théorème de Thalès intervient dans la preuve qui suit. On a donc besoin de Thalès (si l'on suit le plan utilisé) pour montrer le caractère affine des projections dans le plan (idem dans l'espace).

-Montrons que $\pi(\lambda.\overrightarrow{u}) = \lambda.\pi(\overrightarrow{u})$. Soit $\overrightarrow{u} \in \overrightarrow{P}$, $\lambda \in \mathbb{R}^*$. $\exists M, N \in \mathcal{P}$ tq. $\overrightarrow{u} = \overrightarrow{MN}$ et $\lambda.\overrightarrow{u} = \overrightarrow{MP}$. De plus $(MM') \ /\!\!/ (NN') \ /\!\!/ (PP')$, donc par le théorème de Thalès : $\frac{\overrightarrow{M'N'}}{\overline{N'P'}} = \frac{\overrightarrow{MN}}{\overline{MP}} = \frac{1}{\lambda} \operatorname{donc} \lambda.\overrightarrow{M'N'} = \overrightarrow{M'P'}$, ie $\lambda.\pi(\overrightarrow{u}) = \pi(\lambda.\overrightarrow{u})$

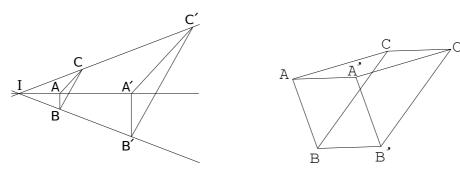
2.3 Le théorème de Desargues

Le théorème suivant est vrai dans un espace affine quelconque.

Théorème: soit ABC et A'B'C' deux triangles non plats d'un espace affine avec A, A' distincts ainsi que B, B' et C, C'. Si les côtés [AB], [BC], [CA] du premier triangle sont respectivement parallèles aux côtés [A'B'], [B'C'], [C'A'] du second, les droites (AA'), (BB') et (CC') sont parallèles ou concourantes.

<u>preuve</u>: si (AA'),(BB'),(CC') ne sont pas parallèles, deux d'entre elles, par exemple (AA') et (BB') se coupent en un point I. Par parallélisme de (AB) et (A'B') et le théorème de Thalès, on a $\frac{\overline{IA'}}{\overline{IA}} = \frac{\overline{IB'}}{\overline{IB}} = k$.

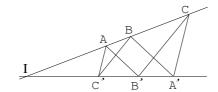
Soit C'' le point de la droite (IC) tel que $\frac{\overline{IC''}}{\overline{IC}} = k$; par la réciproque du théorème de Thalès plan, $\frac{\overline{IA'}}{\overline{IA}} = \frac{\overline{IC''}}{\overline{IC}}$ implique (AC)||(A'C'') et $\frac{\overline{IB'}}{\overline{IB}} = \frac{\overline{IC''}}{\overline{IC}}$ implique (BC)||(B'C''); on a donc (A'C'') = (A'C') et (B'C'') = (B'C') d'où C'' = C' puisque ces deux points sont à l'intersection de (A'C') et (B'C'). C' est donc alignés avec I et C: (AA'), (BB') et (CC') concourantes. Lorsque (AA') et (BB') sont parallèles, ABB'A' est un parallélogramme. Soit C'' tel que $\overrightarrow{AA'} = \overrightarrow{BB'} = \overrightarrow{CC'}: ACC''A'$ et BCC''B' sont donc des parallélogrammes et l'on a (AC) ////(A'C'') et (BC) ////(B'C''); on termine comme précédemment.

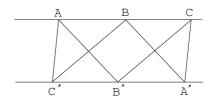


2.4 Le théorème de Pappus

Théorème: soit Δ et Δ' deux droites distinctes d'un plan affine, A, B, C trois points distincts sur *Delta*, et A', B', C' trois points distincts sur Δ' (tous distincts du point d'intersection éventuel de Δ et Δ'). Alors, si (AB') est parallèle à (BA') et si (BC') est parallèle à (CB'), alors (CA') est parallèle à (AC').

preuve : si Δ et Δ' sont sécantes en I : par le théorème de Thalès, le parallélisme de (AB') et (A'B) (resp. de (BC') et (B'C)) implique $\overline{\frac{IA'}{IB'}} = \overline{\frac{IB}{IA}}$ (resp. $\overline{\frac{IB'}{IC'}} = \overline{\frac{IC}{IB}}$). Par multiplication de ces égalités, on obtient $\overline{\frac{IA'}{IC'}} = \overline{\frac{IC}{IA}}$ et la réciproque du théorème de Thalès implique que (AC') est parallèle à (A'C). Si Δ et Δ' sont parallèles, l'hypothèse du théorème fait que ABA'B' et BCB'C' sont des parallélogrammes ; on a $\overrightarrow{AB} = \overrightarrow{B'A'}$, $\overrightarrow{BC} = \overrightarrow{C'B'}$, et par addition de ces égalités : $\overrightarrow{AC} = \overrightarrow{CA'}$; on en déduit que ACA'C' est un parallélogramme et que (AC') est parallèle à (A'C).





2.5 Le théorème de Ménélaüs

Théorème: soit ABC un triangle non applati, et M, N, P trois points appartenant aux droites respectives (AB), (AC), (BC), distincts des sommets de ABC. Alors : M, N, P alignés $\Leftrightarrow \frac{\overline{MA} \cdot \overline{PB} \cdot \overline{NC}}{\overline{MB} \cdot \overline{PC} \cdot \overline{NA}} = 1$

preuve : (\Rightarrow) la parallèle à (MP) passant par C coupe (AB) en K. Le théorème de Thalès entraine :

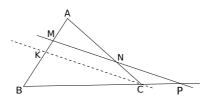
$$\frac{\overline{PB}}{\overline{PC}} = \frac{\overline{MB}}{\overline{MK}} \text{ et } \frac{\overline{NC}}{\overline{NA}} = \frac{\overline{MK}}{\overline{MA}} \text{ donc } \frac{\overline{MA}}{\overline{MB}} \cdot \frac{\overline{PB}}{\overline{NC}} \cdot \frac{\overline{NC}}{\overline{NA}} = 1$$

$$(\leftarrow) \text{ si } M \text{ N. P. vérificant}$$

 $\frac{\overline{PB}}{\overline{PC}} = \frac{\overline{MB}}{\overline{MK}} \text{ et } \frac{\overline{NC}}{\overline{NA}} = \frac{\overline{MK}}{\overline{MA}} \text{ donc } \frac{\overline{MA}}{\overline{MB}} \cdot \frac{\overline{PB}}{\overline{PC}} \cdot \frac{\overline{NC}}{\overline{NA}} = 1$ $(\Leftarrow) \text{ si } M, N, P \text{ vérifient } \frac{\overline{MA}}{\overline{MB}} \cdot \frac{\overline{PB}}{\overline{PC}} \cdot \frac{\overline{NC}}{\overline{NA}} = 1, \text{ notons } \{P'\} = (MN) \cap (BC). \text{ Donc d'après la condition }$

nécéssaire du théorème de Ménélaüs : $\frac{\overline{MA}}{\overline{MB}} \cdot \frac{\overline{P'B}}{\overline{P'C}} \cdot \frac{\overline{NC}}{\overline{NA}} = 1$, donc $\frac{\overline{MA}}{\overline{MB}} \cdot \frac{\overline{PB}}{\overline{PC}} \cdot \frac{\overline{NC}}{\overline{NA}} = \frac{\overline{MA}}{\overline{MB}} \cdot \frac{\overline{P'B}}{\overline{P'C}} \cdot \frac{\overline{NC}}{\overline{NA}}$

donc
$$\frac{\overline{PB}}{\overline{PC}} = \frac{\overline{P'B}}{\overline{P'C}}$$
 d'où $P = P'$



Le théorème de Ceva

Théorème : soit ABC un triangle non applati, et P, Q, R trois points appartenant aux droites respectives (BC), (CA), (AB), distincts des sommets de ABC. Alors :

$$(AP), (BQ), (CR)$$
 sont concourantes ou parallèles $\Leftrightarrow \frac{\overline{PB}}{\overline{PC}} \cdot \frac{\overline{QC}}{\overline{QA}} \cdot \frac{\overline{RA}}{\overline{RB}} = -1$

remarque : ce théorème implique que les médianes d'un triangle sont concourantes, car les trois rapports figurant dans la relation donnée sont égaux à -1.

preuve :(⇒) on peut déduire le théorème de Ceva de celui de Ménélaüs : si les trois droites se coupent en G, la droite (CR) coupe les côtés du triangle ABP en C, G, R. Par le théorème de Ménélaüs, on a

$$\frac{\overline{RA}}{\overline{RB}} \cdot \frac{\overline{CB}}{\overline{CP}} \cdot \frac{\overline{GP}}{\overline{GA}} = 1$$
. De même, la droite (BQ) coupe les côtés du triangle APC en B, G, Q donc

$$\frac{\overline{RA}}{\overline{RB}} \cdot \frac{\overline{CB}}{\overline{CP}} \cdot \frac{\overline{GP}}{\overline{GA}} = 1$$
. De même, la droite (BQ) coupe les côtés du triangle APC en B, G, Q donc $\overline{GA} \cdot \overline{BP} \cdot \overline{QC}$ $\overline{BC} \cdot \overline{BC} \cdot \overline{QA} = 1$. En multipliant les deux égalités obtenues, on obtient $\overline{PB} \cdot \overline{QC} \cdot \overline{RA} = -1$

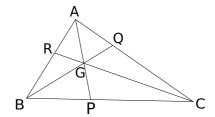
(⇐) Réciproquement, supposons
$$\frac{\overline{PB}}{\overline{PC}} \cdot \frac{\overline{QC}}{\overline{OA}} \cdot \frac{\overline{RA}}{\overline{RB}} = -1$$
. Si les droites (AP) , (BQ) , (CR) ne sont pas

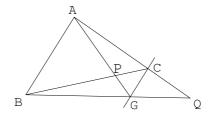
parallèles, deux d'entres elles, par exemple (AP) et (BQ) se coupent en un point G. La droite (CG)coupe alors (AB) en un point R': en effet si elle était parallèle à (AB), le théorème de Thalès

impliquerait $\frac{\overline{PB}}{\overline{PC}} = -\frac{\overline{QA}}{\overline{OC}}$ car ces deux rapports sont égaux à $\frac{\overline{AB}}{\overline{GC}}$, ce qui impliquerait avec l'hypothèse

$$\frac{\overline{RA}}{\overline{RB}}$$
 = 1 ce qui est absurde.

Le théorème de Ceva dans le sens direct implique $\frac{\overline{PB}}{\overline{PC}} \cdot \frac{\overline{QC}}{\overline{QA}} \cdot \frac{\overline{R'A}}{\overline{R'B}} = -1$, ce qui entraîne $\frac{\overline{RA}}{\overline{RB}} = \frac{\overline{R'A}}{\overline{R'B}}$, d'où R = R'. Les trois droites initiales concourent donc en G.





3 Compléments

3.1 Changements 2006

Attention aux changements par rapport à l'année 2005 : le titre change (anciennement : Théorème de Thalès. **Projection dans le plan et l'espace. Caractère affine des projections**). Plan en 2005 : après le théorème de Thalès, les projections.

-En 2005, on pouvait présenter la leçon de deux façons : soit présenter le théorème de Thalès en premier (preuve via mesure algébrique), puis les projections (preuves via le théorème de Thalès) : c'est le choix dans cette leçon ; soit définir d'abord les projections, puis le théorème de Thalès via les projections).

-Pour plus d'infos sur les preuves des projections : cf. exposé 33.

3.2 Projection dans l'espace

Soit (E, \overrightarrow{E}) un espace affine. Si F est un sous-espace affine de E, on note $F = A + \overrightarrow{F} := \{M \in E, \overrightarrow{AM} \in \overrightarrow{F}\}\$

Définition : soit F et G deux sous-espaces affines de E de direction respectives \overrightarrow{F} et \overrightarrow{G} , supplémentaires dans \overrightarrow{E} (ie $\overrightarrow{E} = \overrightarrow{F} \oplus \overrightarrow{G}$: E = F + G et $F \cap G = \{O_E\}$).

La projection sur F parallèlement à \overrightarrow{G} est l'application $p: E \to E$ tel que $F \cap (M + \overrightarrow{G}) = \{M'\}$ $M \mapsto M'$

Théorème: la projection p sur F parallelement à G est affine, autrement dit l'application vectorielle associée π : $\overrightarrow{P} \rightarrow \overrightarrow{P}$ où M' = p(M) et N' = p(N) est LINEAIRE. $\overrightarrow{u} = \overrightarrow{MN} \mapsto \overrightarrow{M'N'}$

Propriété : les projections conservent les barycentres, l'alignement, les rapports des mesures algébriques, les rapports des mesures vectorielles.

<u>preuve</u>: soit *p* application affine, donc propriétés vraies (ce sont mêmes des caractérisations des applications affines).